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Abstract 

Colorectal cancer (CRC) is prone to metastasis and recurrence after surgery, which is one of the main causes for its 
poor treatment and prognosis. Therefore, it is essential to identify biomarkers associated with metastasis and recur-
rence in CRC. DNA methylation has a regulatory role in cancer metastasis, tumor immune microenvironment (TME), 
and prognosis and may be one of the most valuable biomarkers for predicting CRC metastasis and prognosis. We 
constructed a diagnostic model and nomogram that can effectively predict CRC metastasis based on the differential 
methylation CpG sites (DMCs) between metastatic and non-metastatic CRC patients. Then, we identified 17 DMCs 
associated with progression free survival (PFS) of CRC and constructed a prognostic model. The prognosis model 
based on 17 DMCs can predict the PFS of CRC with medium to high accuracy. The results of immunohistochemi-
cal analysis indicated that the protein expression levels of the genes involved in prognostic DMCs were different 
between normal and colorectal cancer tissues. According to the results of immune-related analysis, we found 
that the low-risk patients had better immunotherapy response. In addition, high risk scores were negatively correlated 
with high tumor mutation burden (TMB) levels, and patients with low TMB levels in the high-risk group had the worst 
PFS. Our work shows the clinical value of DNA methylation in predicting CRC metastasis and PFS, as well as their 
correlation with TME, immunotherapy, and TMB, which helps understand the changes of DNA methylation in CRC 
metastasis and improving the treatment and prognosis of CRC.
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Background
Colorectal cancer (CRC) is a common and highly inva-
sive tumor in the digestive tract, and its incidence rate 
and mortality are increasing yearly [1]. CRC is prone to 
metastasis or recurrence after conventional treatment 
(such as surgical resection), and the 5-year survival of 
CRC patients with metastasis is worse than that of pri-
mary cancer patients [2]. At present, systemic chemo-
therapy is often used to inhibit the growth and spread of 
cancer cells. However, it cannot eliminate potential dis-
seminated cancer cells and only benefits patients for sev-
eral months [3]. Cancer metastasis seriously affects the 
treatment and survival of CRC patients [4]. Therefore, 
it’s urgent to understand the process of metastasis and 
screen new biomarkers that can predict the metastasis 
and prognosis of CRC patients.

Accumulative evidence shows that abnormal DNA 
methylation regulates cancer occurrence and progression 
[5]. The change of DNA methylation pattern occurs in 
the early stage of carcinogenesis and leads to the silenc-
ing of multiple tumor suppressor genes in CRC [6]. It 
is reported that DNA methylation may directly affect 
gene transcription to promote cancer transformation 
and tumor metastasis [7, 8]. In addition, several studies 
have been conducted to find abnormal methylation bio-
markers based on DNA in plasma or feces to develop 
noninvasive diagnostic tools related to CRC [9]. Jin et al. 
developed a quantitative analysis method for DNA meth-
ylation markers to monitor CRC [10] effectively. There-
fore, DNA methylation-related features may become a 
promising candidate for CRC biomarker development.

Many epigenetic studies have confirmed that DNA 
methylation plays a key regulatory role in inflammation, 
TME, and immunotherapy [11]. Xu et al. have shown that 
DNA methylation profiles can predict immunotherapy 
responses at the pan-cancer level [12]. Based on the 24 
DNA methylation regulators in CRC, Yuan et al. distin-
guished 3 DNA methylation patterns with different TME 
and prognostic features [13]. Therefore, it is of great 
importance to investigate the correlation between DNA 
methylation with TME in guiding immunotherapy and 
improving the prognosis of CRC.

In this study, we elucidated the changes in DNA meth-
ylation during CRC metastasis and its correlation with 
prognosis and TME. Firstly, we identified differentially 
methylated CpG sites (DMCs) between CRC metastatic 
and non-metastatic groups. Subsequently, DMCs that 
can predict CRC transfer were identified. Then, we con-
structed a DNA methylation-related prognosis and nom-
ogram model that can predict PFS in CRC patients to 
evaluate the clinical value of metastasis-related DMCs. In 
addition, the correlation of DNA methylation with TME 
and immunotherapy in CRC was determined by immune 

infiltration correlation analysis, MSI analysis, and tumor 
mutation burden (TMB) analysis.

Materials and methods
Data acquisition and preprocessing
The 450 K DNA methylation array (n = 289), 27 K DNA 
methylation array (n = 153) of colorectal cancer (CRC) 
patients, and the corresponding clinical information and 
progression free survival data were obtained from the 
UCSC Xena database. 27 K DNA methylation array was 
used for the validation dataset of the prognosis model. 
Patients in the TCGA-COAD queue have received vari-
ous treatment methods, including surgery, radiation 
therapy, drug therapy, and immunotherapy. CRC samples 
with progression free survival times greater than 0 and 
their corresponding data were used for subsequent analy-
sis. 450 K DNA methylation array (GSE164811) of CRC 
patients was obtained from GEO database as the vali-
dation dataset of the diagnostic model. In addition, we 
downloaded tumor mutation burden (TMB) data related 
to CRC patients from TCGA database.

Then, quality control of CpG sites in the DNA meth-
ylation array was performed. First, remove the CpG 
locus located on the sex chromosome. Remove CpG sites 
null in more than 70% of the samples, and retain CpG 
sites where the transcription start site is 2  kb upstream 
to 0.5  kb downstream. The overlapping CpG sites in 
the 450  K DNA methylation array, 27  K DNA methyla-
tion array in TCGA, and 450 K DNA methylation array 
in GEO were reserved. Finally, 21,122 CpG sites were 
retained. Subsequently, KNN was used to impute missing 
values in DNA methylation array data. The “SVA” pack-
age was utilized to remove the batch effect between the 
three DNA methylation arrays.

Differential analysis of methylation CpG sites
In this study, CRC patients were separate the tumor 
metastasis group and tumor non-metastasis group 
according to M (distant metastasis) stage and N (lymph 
node metastasis) stage. CRC patients with both M stage 
and N stage 0 (M = M0 & N = N0) were included in the 
tumor non-metastasis group, and the remaining CRC 
patients were included in the tumor metastasis group. 
In order to obtain differential methylation CpG sites 
(DMCs) in patients with and without metastasis, we used 
the “ChAMP” package to standardize and analyze the dif-
ference of 450 K DNA methylation array in TCGA. The 
methylation CpG sites with P values less than 0.01 were 
considered to be significantly different. These DMCs 
intersect with 21,122 methylation sites obtained by QC 
as the final DMCs.
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Functional enrichment analysis
We annotated the genes where DMCs are located. We 
conducted functional enrichment analysis to clarify 
the biological processes involved in developing CRC 
by DMCs. The “clusterProfiler” package was used to 
perform KEGG analysis. The condition of significant 
pathway is that its p value is less than 0.05. Next, we con-
ducted Metascape analysis on the online Metascape plat-
form (https:// metas cape. org/) for the genes where DMCs 
are located.

Identification of DMCs associated with tumor metastasis 
in CRC 
Firstly, univariate Cox regression analysis and KM test 
were conducted to evaluate the correlation between 
DMCs expression and PFS of CRC. DMCs with p val-
ues less than 0.05 were reserved for subsequent analy-
sis. R packages “igraph” and “reshape2” were utilized to 
map the network of PFS-related CpG sites. The SVM-
RFE (R package “e1071”) method was used to identify 
DMCs associated with metastasis in CRC. An SVM clas-
sifier based on the β values of DMCs was constructed 
to predict CRC metastasis. The random seed was set to 
"124579". ROC curve was used to evaluate the accuracy 
of the diagnostic model constructed based on DMCs in 
predicting CRC metastasis. Based on the CRC metas-
tasis-related DMCs obtained from SVM screening, 
we constructed a nomogram using the “rms” package. 
The calibration curve was utilized to evaluate the accu-
racy of the nomogram in predicting metastasis in CRC 
patients. Decision Curve Analysis (DCA) and Clinical 
Impact Curve were used to assess the performance of the 
nomogram.

 Construction of prognosis model and nomogram related 
to the PFS of CRC 
To further identify CpG sites associated with PFS in CRC 
patients, LASSO-Cox regression analysis (“glmnet” pack-
age) was conducted on DMCs in the diagnostic model. 
Through 1000 iterations, the optimal penalty parameter λ 
of the model was determined. The risk score of each CRC 
patient was obtained based on the β values ( CpGi ) of the 
candidate CpG sites and their corresponding regression 
coefficients ( coef i ). riskScore =

n
i=1

CpGi ∗ coef i  , n 
is the number of methylated CpG sites associated with 
PFS in CRC patients. Next, Kaplan-Meier analysis was 
performed to determine the difference in PFS between 
the two risk groups. The ROC curve was used to evalu-
ate the accuracy of the constructed prognostic model in 
predicting 1- and 3-year PFS of CRC patients. Independ-
ent prognostic analysis was performed on the clinical 

characteristics of CRC as well as the risk scores of prog-
nostic models to identify factors that could indepen-
dently predict PFS in CRC patients.

The “rms” package was conducted to construct a nom-
ogram for predicting PFS of CRC patients. The calibra-
tion curve and ROC curve were drawn to evaluate the 
performance of the nomogram model in predicting the 
PFS of CRC patients.

Immune microenvironment and microsatellite instability 
analysis
We utilized ssGSEA to obtain the scores of immune cells 
and immune-related pathways in CRC patients. In addi-
tion, we performed immune correlation analysis on the 
DNA methylation data (450  K) of TCGA-COAD using 
the HiTIMED algorithm. In order to determine the sen-
sitivity of CRC patients in high- and low-risk groups 
to immunotherapy, we calculated the tumor immune 
dysfunction and exclusion (TIDE) score of the TCGA-
COAD dataset from the TIDE online analysis platform 
(http:// tide. dfci. harva rd. edu/). The higher the TIDE 
score, the worse the immune response of patients. In 
addition, we conducted microsatellite instability (MSI) 
analysis to explore the correlation between risk score and 
MSI.

 Tumor mutation burden analysis
The “maftools” package was utilized to draw waterfall 
diagrams to show the TMB levels of two risk subgroups. 
In order to further determine the correlation between 
TMB and PFS of CRC patients, KM analysis was used to 
compare the difference of PFS of CRC patients between 
high- and low-TMB groups.

Immunohistochemical analysis
To further elucidate the role of DMCs in the progression 
of CRC, we explored the expression at the protein level of 
genes in which prognostic related DMCs are located. We 
downloaded the immunohistochemical maps of normal 
and CRC tissues from the Human Protein Atlas (HPA) 
database.

Statistical analysis
The data analysis and results visualization of this study 
was conducted on R (4.2.2). T-test or Wilcoxon-test was 
used to compare the differences between groups. Spear-
man was used for correlation analysis. In this study, a 
p-value less than 0.05 is statistically significant, and “*” 
represents p < 0.05, “**” represents p < 0.01, and “***” rep-
resents p < 0.001. The workflow is shown in Fig. 1.

https://metascape.org/
http://tide.dfci.harvard.edu/
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Results
Identification of differential methylated CpG sites
According to TCGA-COAD 450  K methylation data, 
according to the p-value less than 0.01, there are 42,310 
methylation CpG sites with differences between the 
metastatic and non-metastatic groups (Supplementary 
material 1). Then, 42,310 CpG sites obtained by the dif-
ferential analysis were intersected with 21,122 CpG sites 
after quality control, and 414 CpG sites were used as 
DMCs for subsequent analysis. We found that the β val-
ues of DMCs were upregulated more in metastatic CRC 
patients. Among them, 380 DMCs had higher β values in 
the metastasis group than in the non-metastasis group, 
and 34 DMCs had lower β values in the metastasis group 
(Fig. 2A). In Fig. 2B, the genes where DMCs are located 

were mainly participate in ligand-receptor interaction, 
Tight junction, Neuroactive cAMP signaling pathway, 
Cell adhesion molecules, and other biological pathways 
(Supplementary material 2). Metasape analysis showed 
that the genes where DMCs are located are mainly 
involved in GPCR downstream signalling, transcription 
by RNA polymerase II, PID AP1 PATHWAY, and cogni-
tion (Fig. 2C, Supplementary material 3).

Methylation characteristics associated with CRC metastasis
In order to screen CpG sites that could diagnose metas-
tasis in CRC patients, we performed a comprehensive 
analysis. First, we utilised univariate Cox regression 
analysis and KM test to discern candidate DMCs asso-
ciated with PFS in CRC patients. Among them, 186 

Fig. 1 Workflow of the research
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DMCs with a p-value less than 0.05 in the KM test 
(Supplementary material 4). In Fig. 3A, we plotted the 
network of the top 50 CpG sites interactions, expres-
sion, and their association with PFS in CRC patients. 
DMCs with p values less than 0.05 in univariate Cox 
regression analysis and KM test were used to construct 
a diagnostic model for predicting metastasis of CRC 
patients, and a total of 20 DMCs were obtained. Subse-
quently, we used SVM-RFE to screen methylation sig-
natures predicting metastasis in CRC patients based on 
the β values of 20 DMCs. According to the results of 
10-fold cross-validation (Fig. 3B), the diagnostic model 
had the highest accuracy (0.734) when the number of 
methylation features was 19 (cg04660698, cg02789485, 
cg03361068, cg26738080, cg25546588, cg14550066, 

cg08022502, cg17328659, cg01184522, cg15993674, 
cg24441911, cg04525496, cg14672680, cg13445358, 
cg15736165, cg16279786, cg16396417, cg00250430, 
and cg13059335). The results of ROC analysis declared 
that 19 DMCs diagnostic model had high accuracy 
in predicting the metastasis of CRC patients in the 
TCGA-COAD cohort (Fig.  3C, AUC = 0.819) and the 
GEO cohort (Fig. 3D, AUC = 0.678).

Then, we constructed a nomogram model based on 
the DMCs in the diagnostic model to predict the risk of 
metastasis in CRC patients (Fig. 4A). In Fig. 4B, the cali-
bration curve showed that the error between the actual 
risk of CRC patients and the metastasis risk predicted by 
the nomogram is minor, suggesting that the nomogram 
based on 19-DMCs can predict the metastasis of CRC 

Fig. 2 Identification of differential methylation CpG Sites (DMCs). A Volcano plot of DMCs between metastatic and non-metastatic CRC patients. 
The red represents the up-regulated methylation CpG Sites, blue represents the down-regulated methylation CpG Sites. B KEGG analysis of DMCs 
located genes. C Metascape analysis of DMCs located genes
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with high accuracy. DCA analysis showed that com-
pared with the all or no patient intervention scheme, 
CRC patients would benefit more from using this nom-
ogram to predict the probability of metastasis at a high 
risk threshold (0–1), which indicated that the clini-
cal application of 19-DMCs nomograms has a higher 
impact (Fig. 4C). The clinical impact curve showed that 
the “Number high risk” curve and the “Number high 
risk with event” curve were close to 1 from 0.3, which 

revealed that the nomogram had a good predictive ability 
(Fig. 4D). The results suggested that these 19 DMCs may 
play an essential role in the metastasis of CRC.

Identification of PFS related methylation signatures in CRC 
LASSO-Cox regression analysis identified methylation 
characteristics associated with PFS in CRC patients from 
19 DMCs. 10-fold cross-validation was conducted for the 
model construction. When the number of methylation 

Fig. 3 Construction of diagnostic model for predicting CRC metastasis. A Circos graph for univariate Cox regression analysis, which represents 
the correlation of DMCs β value and prognosis of CRC (red: up-regulated methylation CpG Site, grey: down-regulated methylation CpG Site, purple: 
risk factor; green: favorable factor) in the TCGA-COAD (p-values for Cox test: 1e- 04 to 1). B Line plot of 10-fold cross-validation of the SVM-RFE 
algorithm for feature selection. ROC curves of diagnostic model in the TCGA cohort (C) and GEO cohort (D)
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characteristics was 17, λ was the smallest, and the model 
was optimal (Fig.  5A-B). Therefore, these 17 DMCs 
as candidate methylation characteristics related to 
PFS in CRC patients. Based on the β values of these 17 
DMCs and the corresponding regression coefficients, 
the following prognostic features were constructed: 
riskScore =

(

cg02789485*1.692
)

+ (cg04660698*− 32.388)+

(cg00250430*− 0.456)+
(

cg16, 396, 417*14.126
)

+ (cg14, 550,

066*− 0.655)+ (cg24, 441, 911*− 4.021)+ (cg26, 738,

080*− 0.403)+ (cg04525496*− 0.255)+ (cg03361068*−

0.834)+
(

cg01184522*1.356
)

+
(

cg25, 546, 588*5.063
)

+

(

cg17, 328, 659*0.839
)

+

(

cg13, 445, 358*6.063
)

+

(

cg15, 993,

674*0.709)+
(

cg08022502*0.242
)

+ (cg14, 672, 680*− 0.269)

+(cg13, 059, 335*− 1.596) . CRC patients in the TCGA-
COAD 450  K cohort (training dataset) and TCGA-
COAD 27  K cohort (testing dataset) were divided into 
high-risk and low-risk groups based on the median risk 
score of methylation signatures. The KM analysis 
revealed that the PFS of patients in the high-risk group 
was significantly lower than that in the low-risk group in 
both the training dataset (Fig. 5C; Table 1) and the testing 
dataset (Fig. 5E). The ROC curve showed that the ROC 

Fig. 4 Construction of a nomogram model for predicting CRC metastasis based on the TCGA cohort. A Nomogram to predict the metastasis 
of CRC. B Calibration curve to assess the predictive power of the nomogram model. DCA curve (C) and clinical impact curve (D) to evaluate 
the clinical value of the nomogram model
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Fig. 5 Establishment of a 17-DMCs signature. A and B LASSO Cox regression (with minimized lambda) of the DMCs. Survival curve showing 
different PFS between high- and low-risk groups in training dataset (C) and testing dataset (E). 1-year and 3-year ROC curves for training dataset (D) 
and testing datasets (F)
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AUC values of the prognostic model based on 17 DMCs 
for predicting 1-year and 3-year PFS of CRC patients in 
the training dataset were 0.754 and 0.785, respectively 
(Fig. 5D). The 1-year and 3-year ROC AUC values of the 
testing dataset were 0.651 and 0.658, respectively 
(Fig. 5F), which further verified the high accuracy of the 
prognostic model in predicting PFS of CRC patients. KM 
analysis showed that there was a significant difference in 
PFS between CRC patients in the high and low expres-
sion groups of 17DMCs (Fig. 6A-Q). All in all, the prog-
nostic model based on 17 DMCs had good predictive 
value.

Then, we explored the correlation between the prog-
nostic models and pathological factors in the training 
dataset. In Fig.  7A, Age (p < 0.01), Stage (p < 0.001), T 
(p < 0.05), M (p < 0.05), and N (p < 0.001) were statistically 
different between the two risk subgroups. Among them, 
the Stage and N stages of CRC patients in the high-risk 
group were higher than those in the low-risk group. In 
addition, as the risk score increased, the Stage, T, M, and 
N stages also increased, implying that prognostic features 
may be associated with tumor enlargement and metasta-
sis (Fig. 7B-D). In addition, we plotted the ROC curves of 

the prognostic model and clinicopathological features to 
predict the 1-, 3-, and 5-year PFS of CRC patients. The 
results showed that the prognostic model based on 17 
DMCs had good prediction performance compared with 
clinicopathological features (Fig. 7F-H).

Furthermore, we explored the expression at the pro-
tein level of genes in which prognostic related DMCs 
are located. From the HPA database, we searched for 
immunohistochemical maps of 10 genes associated 
with prognostic DMCs. Immunohistochemical analysis 
showed that the protein expression of the genes involved 
in prognostic DMCs was different between normal and 
diseased tissues. (Fig. 8A-J). Compared with normal tis-
sues, PAGR1 (cg04660698) (staining: Low, intensity: 
Weak), VCAN (cg04525496) (staining: Low, intensity: 
Moderate), IL15 (cg25546588) (staining: Low, intensity: 
Weak), DMRT2 (cg00250430) (staining: Low, intensity: 
Weak) and STUB1 (cg17328659) (staining: Medium, 
intensity: Moderate) were lower in CRC, while MZF1 
(cg16396417) (staining: Medium, intensity: Moderate), 
RBP5 (cg24441911) (staining: High, intensity: Strong), 
ESPL1 (cg13445358) (staining: High, intensity: Strong), 
UNC45A (cg08022502) (staining: High, intensity: Strong) 
and TNNI2 (cg14672680) (staining: Medium, intensity: 
Moderate) were highly expressed in CRC. Immunohisto-
chemical information for prognostic genes can be found 
in Supplementary Material 5. In addition, we analyzed 
the methylation levels of genes (GLIPR1L2, PAGR1, 
MZF1, NCR1, RBP5, TNNC1, VCAN, TRIM9, ZNF496, 
IL15, DMRT2, STUB1, ESPL1, PRNP, UNC45A, TNNI2, 
ADAMDEC1) 17 prognostic related methylation sites. 
We input the above 17 genes into the Ualcan database 
(https:// ualcan. path. uab. edu/) to obtain their methyla-
tion level changes across different stages (Stage I-IV). 
The results showed that the 17 genes mentioned above 
showed significant differences between different stages 
(Supplementary Material 6), indicating a close correla-
tion between the methylation levels of the 17 genes and 
disease progression in CRC. This further confirmed that 
the 17 prognostic related methylation sites may play an 
important role in CRC by affecting gene transcription or 
expression.

The above results further confirmed that prognosis 
related DMCs may play an important role in the patho-
logical progression of CRC.

Nomogram model related to PFS of CRC 
Univariate Cox and multivariate Cox regression analy-
ses were performed on risk score and clinical charac-
teristics in the training dataset to screen features that 
could independently predict PFS in CRC. Figure  9A 
and B (Supplementary Material 7) show that risk score, 
T, and M were independent predictors of PFS for CRC. 

Table 1 Clinical information of TCGA-COAD 450 K datasets

Characteristics High-risk Low-risk

n 144 145

Gender, n (%)

 Female 65 (22.5%) 68 (23.5%)

 Male 79 (27.3%) 77 (26.6%)

Stage, n (%)

 Stage I 16 (5.5%) 27 (9.3%)

 Stage III 56 (19.4%) 28 (9.7%)

 Stage II 40 (13.8%) 72 (24.9%)

 Stage IV 27 (9.3%) 13 (4.5%)

 Unknow 5 (1.7%) 5 (1.7%)

T, n (%)

 T2 17 (5.9%) 25 (8.7%)

 T4 28 (9.7%) 10 (3.5%)

 T3 95 (32.9%) 106 (36.7%)

 T1 3 (1%) 4 (1.4%)

 Unknow 1 (0.3%) 0 (0%)

M, n (%)

 M0 87 (30.1%) 110 (38.1%)

 MX 27 (9.3%) 20 (6.9%)

 M1 27 (9.3%) 13 (4.5%)

 Unknow 3 (1%) 2 (0.7%)

N, n (%)

 N0 63 (21.8%) 105 (36.3%)

 N1 50 (17.3%) 23 (8%)

 N2 31 (10.7%) 17 (5.9%)

https://ualcan.path.uab.edu/
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Fig. 6 KM curve of 17-DMCs signature. A-Q cg00250430, cg01184522, cg02789485, cg03361068, cg04525496, cg04660698, cg08022502, 
cg13059335, cg13445358, cg14550066, cg14672680, cg15993674, cg16396417, cg17328659, cg24441911, cg25546588, and cg26738080
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Then, we constructed a nomogram model based on the 
risk score, T and M, to predict the PFS of CRC patients 
at 1-, 3-, and 5 years (Fig.  9C). To estimate the predic-
tive performance of the nomogram, we plotted the ROC 
curve and calibration curve of the nomogram model. 
The ROC curve revealed that the nomogram model had 
high accuracy in predicting the PFS of CRC patients at 
1 year (AUC = 0.775), 3 years (AUC = 0.825), and 5 years 
(AUC = 0.809) (Fig. 9D). In addition, the calibration curve 
showed that the prediction results of the nomogram 

model at 1 year and 5 years were in good agreement with 
the actual observed values (Fig. 9E-G).

Immune differences between risk subgroups
According to the results of ssGSEA, we found that the 
scores of immune cells and immune function were gen-
erally higher in the high-risk group than in the low-risk 
group. Figure  10A showed that the scores of B_cells, 
DCs (Dendritic Cells), iDCs (Immature Dendritic 
Cells), Macrophages, Mast_cells, Neutrophils, pDCs 

Fig. 7 Correlation analysis between risk score and clinical indicators. A Heatmap for the connections between clinical indicators and the risk 
groups. The difference of risk score between different groups stratified by Age (B), Stage (C), T stage (D), and M stage (E). 1-year (F), 3-year (G) 
and 5-year (H) ROC curves of risk score and clinicopathological characteristics
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(Plasmacytoid Dendritic Cells), T_helper_cells, Tumor 
Infiltrating Lymphocytes (TIL) and Regulatory T cells 
(Treg) were significantly different between the high-risk 
and low-risk groups. Figure 10B showed that the scores 
of APC_co_stimulation, CCR, HLA, T_cell_co-stimula-
tion, and Type_II_IFN_Reponse were significantly differ-
ent between the two risk subgroups. The risk score was 
highly correlated with B_cells, Macrophages, Mast_cells, 
Neutrophils, pDCs, and Type_II_IFN_Reponse. Next, we 
performed immune correlation analysis on DNA methyl-
ation data in the TCGA-COAD cohort using HiTIMED. 
The results showed that there was a significant differ-
ence in the immune scores of CD8nv and DC between 
the risk groups (Supplementary Material 8). Moreover, 
as the risk score increased, so did the score for immune 
cells or pathways (Fig. 10C-H). TIDE score can be used 
to screen patients suitable for immunotherapy. The 
TIDE score, the proportion of MSI, and the proportion 
of MSI-L in the high-risk group were significantly higher 
than those in the low-risk group (Fig. 10I-J). In addition, 
with the increase of risk score, MSI-L was significantly 
higher than MSI-H (Fig.  10K, p = 0.021). These results 
suggested that the prognosis of patients in the high-risk 
group and the response to immunotherapy are worse, 

and immunotherapy helps to improve the prognosis of 
patients in the low-risk group.

Differences in TMB levels between risk subgroups
TMB levels are highly correlated with the prognosis of 
cancer patients. Therefore, we investigated the TMB dif-
ferences between the high- and low-risk groups in the 
training dataset. Figure 11A and B revealed that the muta-
tion rate of patients in the high-risk group was slightly 
lower than that in the low-risk group. Risk scores were 
negatively correlated with TMB levels (Fig.  11C), and 
the TMB level (log2) of the low-risk group was signifi-
cantly higher than that of the high-risk group (p = 0.0002, 
Fig.  11D). KM analysis results revealed that patients in 
the H-TMB group had higher PFS than those in L-TMB 
(Fig.  11E), and patients with low TMB in the high-risk 
group had the worst PFS (Fig.  11F). Studies have found 
that patients with high TMB levels respond better to 
immunotherapy, suggesting that immunotherapy is less 
effective in improving outcomes in CRC patients. These 
results further confirmed that patients in the high-risk 
group have a poorer prognosis and sensitivity to immuno-
therapy than those in the low-risk group, and patients in 
the low-risk group are more suitable for immunotherapy.

Fig. 8 Immunohistochemistry analysis of genes where the prognostic DMCs was located. A cg00250430 (DMRT2). B cg04525496 (VCAN). C 
cg04660698 (PAGR1). D cg08022502 (UNC45A). E cg13445358 (ESPL1). F cg14672680 (TNNI2). G cg16396417 (MZF1). H cg17328659 (STUB1). I 
cg24441911 (RBP5). J cg25546588 (IL15). N represents normal cells, T represents tumor cells. Antibodies were marked below the box
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Fig. 9 Construction of nomograph model. The forest plot of univariate Cox analysis (A) and multivariate Cox analysis (B). C Nomogram to predict 
the 1-year, 3-year, and 5-year PFS of CRC patients. D ROC curve to assess the predictive power of the nomogram model. 1-year (E), 3-year (F) 
and 5-year (G) calibration curves of nomograph models
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Fig. 10 Comparison of immune microenvironment between two risk subgroups. Differences in the abundance of immune cells (A) and immune 
function (B) among risk subgroups. C-H Correlation between risk score and B_cells, Macrophages, Mast_cells, Neutrophils, pDCs, Type_II_IFN_
Reponse respectively. I Differences in TIDE scores between high-risk and low-risk groups. J The proportion of MSS and MSI (MSI-H and MSI-L) in risk 
subgroups. K The difference of risk score among MSS subtype, MSI-H subtype and MSI-L subtype
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Fig. 11 Landscape of TMB between risk subgroups. Waterfall showing the top 20 mutated genes in low-(A) and high-risk group (B). 
C Correlation between risk score and TMB level. D Differences in TMB levels between risk subgroups. E Survival curve showing different PFS 
between high- and low-TMB groups in training dataset. F Survival curve of the comprehensive analyses between TMB and risk score
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Discussion
Abnormal DNA methylation can not only be used as a 
target for cancer therapy but also for disease diagnosis 
and prognosis prediction [14, 15]. In addition, changes in 
DNA methylation mainly occur in the early stage of car-
cinogenesis and cancer progression, which makes DNA 
methylation characteristics conducive to the early pre-
vention and diagnosis of disease. Metastasis and recur-
rence are the key factors affecting the treatment and 
survival of CRC patients. DNA methylation features have 
great potential as biomarkers related to CRC progression 
and prognosis. Therefore, our study aimed to elucidate 
the landscape of DNA methylation during CRC metasta-
sis and assess its clinical guiding value in CRC.

Firstly, we identified DMCs between CRC patients with 
and without metastasis. Most DMCs were found to have 
increased β values in CRC patients with metastasis com-
pared to CRC patients without metastasis. It has been 
reported that many tumor suppressor genes are partially or 
wholly silenced due to hypermethylation of their CpG sites 
[16], suggesting that the hypermethylation level of CpG 
sites may play a vital role in the occurrence and progres-
sion of CRC metastasis. The results of enrichment analysis 
showed that the genes where DMCs are located were mainly 
enriched in Neuroactive ligand-receptor interaction, cAMP 
signaling pathway, transcription by RNA polymerase II, cog-
nition, and cell-cell adhesion. In the process of cancer BMS, 
Neuroactive ligand-receptor interaction plays a prominent 
role in adapting to the environment of target organs [17]. 
cAMP signaling pathway can regulate the ability of colon 
cancer metastasis [18]. Guo et  al. found that Tetraspanin 
CO-029 participated in cancer metastasis in the digestive 
system by regulating cell-cell adhesion [19]. The biological 
pathways obtained from the enrichment of genes where 
DMCs are located related to the progression of CRC, sug-
gesting that DMCs may also play an important role in CRC.

In order to evaluate the prognostic ability of DMCs, 
univariate Cox regression analysis and KM test were 
performed for DMCs, and a total of 20 candidate DMCs 
related to PFS in CRC patients were screened. Based 
on the PFS-related candidate DMCs, 19 DMCs were 
selected by the SVM-RFE algorithm for the construction 
of the diagnostic model and nomogram model. ROC 
analysis showed that the 19-DMCs diagnostic model 
could predict the metastasis of CRC patients with high 
accuracy. The calibration curve, DCA analysis, and clini-
cal impact curve showed that the 19-DMCs nomogram 
model had good clinical guiding value in predicting CRC 
metastasis. These results indicated that 19 DMCs may 
play a key role in CRC metastasis. Based on 19 DMCs, 
LASSO-Cox regression analysis was utilized to con-
struct 17 DMCs (cg02789485, cg04660698, cg00250430, 
cg16396417, cg14550066, cg24441911, cg26738080, 

cg04525496, cg03361068, cg01184522, cg25546588, 
cg17328659, cg13445358, cg15993674, cg08022502, 
cg14672680, and cg13059335). The ROC curve showed 
that the prognostic model could predict 1-year and 
3-year PFS of CRC patients with medium-high accuracy. 
Compared with the actual observed values, the nomo-
gram model can better predict the 1-year and 5-year PFS 
of CRC patients.

The alteration of CpG sites has an important effect on 
gene expression. We annotated 17 prognostic DMCs 
genes: cg02789485 (GLIPR1L2), cg04660698 (PAGR1), 
cg16396417 (MZF1), cg14550066 (NCR1), cg24441911 
(RBP5), cg26738080 (TNNC1), cg04525496 (VCAN), 
cg03361068 (TRIM9), cg01184522 (ZNF496), cg25546588 
(IL15), cg00250430 (DMRT2), cg17328659 (STUB1), 
cg13445358 (ESPL1), cg15993674 (PRNP), cg08022502 
(UNC45A), cg14672680 (TNNI2), cg13059335 (ADAM-
DEC1). GLIPR1L2 is a novel target gene of tumor sup-
pressor gene p53, and p53 mutations occur in 60% of CRC 
[20, 21]. PAGR1 can affect fat generation by regulating C/ 
EBp-β and C/ EBp-δ [22]. Multiple studies have shown 
that fat is one of the risk factors for CRC [23]. Studies have 
found that MZF1 can promote the proliferation of tumor 
cells in CRC and inhibit cancer progression through apop-
tosis [24]. In mouse models, NCR1-mediated IFN-γ pro-
duction leads to increased expression of FN1 in tumors, 
thereby altering the primary tumor structure and reduc-
ing tumor metastasis [25]. Wan et al. found that deletion 
of RBP5-mediated protein delayed tumor progression in 
a mouse model of cholangiocarcinoma [26]. Studies have 
shown that TNNC1 is a promising biomarker for metas-
tasis of ovarian and tongue cancers [27, 28]. The upregu-
lation of VCAN mediated by INHBA can promote the 
migration and proliferation of cancer cells in CRC [29]. 
Cui et  al. found that IFN-γ produced by NK cells could 
affect the proliferation of CRC cells through the regula-
tion of IL-15 [30]. In some CRC samples, the proportion 
of CHIP (aka STUB1) increased and was associated with 
poor survival [31]. Studies have found that, compared with 
normal samples, PRNP expression is up-regulated in CRC 
and is an independent prognostic factor for 3-year sur-
vival of CRC [32]. A large amount of evidence has revealed 
that the expression of UNC45A in cancer cells is related 
to the proliferation and metastasis of solid tumors [33]. 
Through comprehensive biogenic analysis, Li et al. found 
that TNNI2 was identified as a prognostic biomarker for 
CRC. In addition, the model based on 7 genes includ-
ing TNNI2 can predict CRC metastasis (liver or lung), 
with AUC of 0.933 [34]. Macartney-Coxson et  al. identi-
fied ADAMDEC1 as a candidate gene associated with 
CRC liver metastasis, whose mRNA and protein expres-
sion decreased during the occurrence and progression of 
CRC [35]. In summary, 17 prognostic-related DMCs genes 
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play an important role in the occurrence and progression 
of CRC, which further verifies that 17 prognostic-related 
DMCs may also play a key role in CRC.

DNA methylation is essential for the interaction 
between tumors and immune cells [36]. In this study, 
we found that the scores of immune cells and immune-
related pathways in the high-risk group were gener-
ally higher than those in the low-risk group. Multiple 
immune cells or immune-related pathways, such as Mac-
rophages, Mast_cells, pDCs, and Type_II_IFN_Reponse, 
have significant differences between the two risk sub-
groups. In addition, as the risk score increased, so did 
the score of immune cells or immune-related pathways. 
The interaction between the extracellular trap of mac-
rophages and colon cancer cells promotes CRC invasion 
[37]. Neutrophils and their releases have been associated 
with the progression and metastasis of various cancers, 
and targeting neutrophils in extracellular traps may be an 
effective strategy to inhibit the metastasis of colorectal 
cancer [38]. Type_II_IFN_Reponse is involved in cancer’s 
immune response regulation mechanism and is related 
to the growth and migration ability of cancer cells [39]. 
We also found that TIDE scores were higher in high-risk 
patients than in low-risk patients. Furthermore, patients 
with high TMB had higher PFS than those with low 
TMB, and TMB levels decreased in CRC patients as risk 
scores increased. These results indicated that the low-risk 
patients had better immunotherapy response.

There are some limitations to this study. We need more 
CRC 450  K DNA methylation array data to validate the 
DNA methylation-related prognostic model. In addition, 
the treatment methods of CRC patients have some potential 
impacts on their prognosis, including whether the treatment 
methods are effective for patients, the interaction effects 
between multiple treatment methods, genetic variations of 
patients, and their sensitivity to treatment methods. There-
fore, there is an urgent need for more precise personalized 
treatment to help patients choose more effective treatment 
methods and effectively improve their prognosis.

Conclusion
In short, we identified DNA methylation biomarkers asso-
ciated with CRC metastasis and constructed a 19 DMCs 
correlation diagnostic model and a line graph model that 
can accurately predict CRC metastasis. We also identified 
DNA methylation biomarkers associated with PFS in CRC 
patients and constructed a 17 DMCS-related prognostic 
model that predicted PFS in CRC patients with moderate 
to high accuracy. In addition, we elucidate the association 
of TME, MSI, and TMB with DNA methylation-related 
prognostic models. Our results may provide new biomark-
ers for predicting metastasis in CRC patients and PFS.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12920- 024- 01898-4.

Supplementary Material 1.

Supplementary Material 2.

Supplementary Material 3.

Supplementary Material 4.

Supplementary Material 5.

Supplementary Material 6.

Supplementary Material 7.

Supplementary Material 8.

Acknowledgements
We acknowledge the TCGA, GEO and TIMER databases for free use.

Research involving human participants and/or animals
Not applicable.

Disclosure of potential conflicts of interest
Not applicable.

Authors’ contributions
Fang Qian wrote the main manuscript text, Kai Wei prepared Fig. 1, Fang Qian 
and Li Qiang prepared Figs. 2 and 3, Fang Qian and Huidan Chang prepared 
Figs. 4 and 5, Fang Qian prepared Figs. 6, 7, 8, 9, 10 and 11. Xiaoyi Chen, 
Tao Huang, and Yixue Li checked the manuscript. All authors reviewed the 
manuscript.

Funding
This work was supported by National Key R&D Program of China 
(2018YFA0900700, 2022YFF1203202), Self-supporting Program of Guangzhou 
Laboratory (SRPG22-007), R&D Program of Guangzhou National Laboratory, 
Grant No. GZNL2024A01002, Science and Technology Project of Yunnan 
Province (202103AQ100002), II Phase External Project of Guoke Ningbo Life 
Science and Health Industry Research Institute, University of Chinese Academy 
of Sciences (2020YJY0217), Strategic Priority Research Program of Chinese 
Academy of Sciences (XDB38050200, XDB38040202, XDA26040304).

Availability of data and materials
All data can be obtained in TCGA and GEO databases.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors consent to the publication of this study.

Competing interests
The authors declare no competing interests.

Received: 22 September 2023   Accepted: 30 April 2024

References
 1. Jia SN, Han YB, Yang R, Yang ZC. Chemokines in colon cancer progression. 

Semin Cancer Biol. 2022;86(Pt 3):400–7. https:// doi. org/ 10. 1016/j. semca 
ncer. 2022. 02. 007. Epub 2022 Feb 7. PMID: 35183412.

 2. Zeng X, Ward SE, Zhou J, Cheng ASL. Liver Immune Microenvironment 
and Metastasis from Colorectal Cancer-Pathogenesis and therapeutic 

https://doi.org/10.1186/s12920-024-01898-4
https://doi.org/10.1186/s12920-024-01898-4
https://doi.org/10.1016/j.semcancer.2022.02.007
https://doi.org/10.1016/j.semcancer.2022.02.007


Page 18 of 19Qian et al. BMC Medical Genomics          (2024) 17:127 

perspectives. Cancers (Basel). 2021;13(10):2418. https:// doi. org/ 10. 3390/ 
cance rs131 02418. PMID: 34067719; PMCID: PMC8156220.

 3. Tauriello DV, Calon A, Lonardo E, Batlle E. Determinants of metastatic 
competency in colorectal cancer. Mol Oncol. 2017;11(1):97–119. https:// 
doi. org/ 10. 1002/ 1878- 0261. 12018. Epub 2017 Jan 3. PMID: 28085225; 
PMCID: PMC5423222.

 4. Li X, Zhang Q, Zhao L, Jiang L, Qi A, Wei Q, Song X, Wang L, Zhang L, Zhao 
Y, Lv X, Wei M, Zhao L. A combined four-mRNA signature Associated 
with lymphatic metastasis for prognosis of Colorectal Cancer. J Cancer. 
2020;11(8):2139–49. https:// doi. org/ 10. 7150/ jca. 38796. PMID: 32127941; 
PMCID: PMC7052913.

 5. Sui J, Li YH, Zhang YQ, Li CY, Shen X, Yao WZ, Peng H, Hong WW, Yin LH, 
Pu YP, Liang GY. Integrated analysis of long non-coding RNA–associated 
ceRNA network reveals potential lncRNA biomarkers in human lung 
adenocarcinoma. Int J Oncol. 2016;49(5):2023–36. https:// doi. org/ 10. 
3892/ ijo. 2016. 3716. Epub 2016 Sep 30. PMID: 27826625.

 6. Yang Z, Jones A, Widschwendter M, Teschendorff AE. An integrative pan-
cancer-wide analysis of epigenetic enzymes reveals universal patterns 
of epigenomic deregulation in cancer. Genome Biol. 2015;16(1):140. 
https:// doi. org/ 10. 1186/ s13059- 015- 0699-9. PMID: 26169266; PMCID: 
PMC4501092.

 7. Casalino L, Verde P. Multifaceted roles of DNA methylation in Neoplastic 
Transformation, from Tumor suppressors to EMT and metastasis. Genes 
(Basel). 2020;11(8):922. https:// doi. org/ 10. 3390/ genes 11080 922. PMID: 
32806509; PMCID: PMC7463745.

 8. Gutierrez A, Demond H, Brebi P, Ili CG. Novel methylation biomarkers for 
Colorectal Cancer Prognosis. Biomolecules. 2021;11(11):1722. https:// doi. 
org/ 10. 3390/ biom1 11117 22. PMID: 34827720; PMCID: PMC8615818.

 9. Coppedè F, Lopomo A, Spisni R, Migliore L. Genetic and epigenetic 
biomarkers for diagnosis, prognosis and treatment of colorectal cancer. 
World J Gastroenterol. 2014;20(4):943–56. https:// doi. org/ 10. 3748/ wjg. 
v20. i4. 943. PMID: 24574767; PMCID: PMC3921546.

 10. Jin S, Zhu D, Shao F, Chen S, Guo Y, Li K, Wang Y, Ding R, Gao L, Ma W, Lu 
T, Li D, Zhang Z, Cai S, Liang X, Song H, Ji L, Li J, Zheng Z, Jiang F, Wu X, 
Luan J, Zhang H, Yang Z, Cantor CR, Xu C, Ding C. Efficient detection and 
post-surgical monitoring of colon cancer with a multi-marker DNA meth-
ylation liquid biopsy. Proc Natl Acad Sci U S A. 2021;118(5):e2017421118. 
https:// doi. org/ 10. 1073/ pnas. 20174 21118. PMID: 33495330; PMCID: 
PMC7865146.

 11. Luo H, Ye M, Hu Y, Wu M, Cheng M, Zhu X, Huang K. DNA methylation 
regulator-mediated modification patterns and tumor microenvironment 
characterization in glioma. Aging. 2022;14(19):7824–50. https:// doi. org/ 
10. 18632/ aging. 204291. Epub 2022 Sep 21. PMID: 36152044; PMCID: 
PMC9596205.

 12. Xu B, Lu M, Yan L, Ge M, Ren Y, Wang R, Shu Y, Hou L, Guo H. A Pan-cancer 
analysis of predictive methylation signatures of response to Cancer 
Immunotherapy. Front Immunol. 2021;12:796647. https:// doi. org/ 10. 
3389/ fimmu. 2021. 796647. PMID: 34956232; PMCID: PMC8695566.

 13. Yuan S, Gao Y, Xia Y, Wang Z, Wang X. DNA methylation regulator-medi-
ated modification pattern defines tumor microenvironment immune 
infiltration landscape in colon cancer. Front Genet. 2022;13:1008644. 
https:// doi. org/ 10. 3389/ fgene. 2022. 10086 44. PMID: 36276973; PMCID: 
PMC9582351.

 14. Yamashita K, Hosoda K, Nishizawa N, Katoh H, Watanabe M. Epigenetic bio-
markers of promoter DNA methylation in the new era of cancer treatment. 
Cancer Sci. 2018;109(12):3695–706. https:// doi. org/ 10. 1111/ cas. 13812.

 15. Szejniuk WM, Robles AI, McCulloch T, Falkmer U G I Røe OD, Roe OD. 
Epigenetic predictive biomarkers for response or outcome to platinum-
based chemotherapy in non-small cell lung cancer, current state-of-
art. Pharmacogenomics J. 2019;19(1):5–14. https:// doi. org/ 10. 1038/ 
s41397- 018- 0029-1.

 16. Shenoy N, Vallumsetla N, Zou Y, Galeas JN, Shrivastava M, Hu C, Susztak 
K, Verma A. Role of DNA methylation in renal cell carcinoma. J Hematol 
Oncol. 2015;8:88. https:// doi. org/ 10. 1186/ s13045- 015- 0180-y. PMID: 
26198328; PMCID: PMC4511443.

 17. Zhang L, Fan M, Napolitano F, Gao X, Xu Y, Li L. Transcriptomic analysis 
identifies organ-specific metastasis genes and pathways across different 
primary sites. J Transl Med. 2021;19(1):31. https:// doi. org/ 10. 1186/ s12967- 
020- 02696-z. PMID: 33413400; PMCID: PMC7791985.

 18. Fujishita T, Kojima Y, Kajino-Sakamoto R, Mishiro-Sato E, Shimizu Y, Hosoda 
W, Yamaguchi R, Taketo MM, Aoki M. The cAMP/PKA/CREB and TGFβ/

SMAD4 Pathways Regulate Stemness and Metastatic Potential in Colorec-
tal Cancer Cells. Cancer Res. 2022;82(22):4179–4190. https:// doi. org/ 10. 
1158/ 0008- 5472. CAN- 22- 1369. PMID: 36066360.

 19. Guo Q, Xia B, Zhang F, Richardson MM, Li M, Zhang JS, Chen F, Zhang XA. 
Tetraspanin CO-029 inhibits colorectal cancer cell movement by deregu-
lating cell-matrix and cell-cell adhesions. PLoS ONE. 2012;7(6):e38464. 
https:// doi. org/ 10. 1371/ journ al. pone. 00384 64. Epub 2012 Jun 5. PMID: 
22679508; PMCID: PMC3367972.

 20. Ren C, Ren CH, Li L, Goltsov AA, Thompson TC. Identification and charac-
terization of RTVP1/GLIPR1-like genes, a novel p53 target gene cluster. 
Genomics. 2006;88(2):163–72. https:// doi. org/ 10. 1016/j. ygeno. 2006. 03. 
021. Epub 2006 May 22. PMID: 16714093.

 21. Nakayama M, Oshima M. Mutant p53 in colon cancer. J Mol Cell Biol. 
2019;11(4):267–76. https:// doi. org/ 10. 1093/ jmcb/ mjy075. PMID: 
30496442; PMCID: PMC6487790.

 22. Lee JE, Cho YW, Deng CX, Ge K. MLL3/MLL4-Associated PAGR1 regulates 
adipogenesis by Controlling induction of C/EBPβ and C/EBPδ. Mol Cell 
Biol. 2020;40(17):e00209–20. https:// doi. org/ 10. 1128/ MCB. 00209- 20. 
PMID: 32601106; PMCID: PMC7431048.

 23. Ocvirk S, Wilson AS, Appolonia CN, Thomas TK, O’Keefe SJD. Fiber, Fat, and 
Colorectal Cancer: New Insight into Modifiable Dietary Risk Factors. Curr 
Gastroenterol Rep. 2019;21(11):62. https:// doi. org/ 10. 1007/ s11894- 019- 
0725-2. PMID: 31792624.

 24. Liu S, Sima X, Liu X, Chen H. Zinc finger proteins: functions and mecha-
nisms in Colon cancer. Cancers (Basel). 2022;14(21):5242. https:// doi. org/ 
10. 3390/ cance rs142 15242. PMID: 36358661; PMCID: PMC9654003.

 25. Glasner A, Levi A, Enk J, Isaacson B, Viukov S, Orlanski S, Scope A, Neuman 
T, Enk CD, Hanna JH, Sexl V, Jonjic S, Seliger B, Zitvogel L, Mandelboim O. 
NKp46 Receptor-Mediated Interferon-γ Production by Natural Killer Cells 
Increases Fibronectin 1 to Alter Tumor Architecture and Control Metasta-
sis. Immunity. 2018;48(1):107–119.e4. https:// doi. org/ 10. 1016/j. immuni. 
2017. 12. 007. Epub 2018 Jan 9. Erratum in: Immunity. 2018;48(2):396–398. 
PMID: 29329948.

 26. Wan ZH, Jiang TY, Shi YY, Pan YF, Lin YK, Ma YH, Yang C, Feng XF, Huang LF, 
Kong XN, Ding ZW, Tan YX, Dong LW, Wang HY. RPB5-Mediating protein 
promotes Cholangiocarcinoma Tumorigenesis and Drug Resistance by 
competing with NRF2 for KEAP1 binding. Hepatology. 2020;71(6):2005–22. 
https:// doi. org/ 10. 1002/ hep. 30962. Epub 2020 Feb 20. PMID: 31541481.

 27. Yang X, Wu K, Li S, Hu L, Han J, Zhu D, Tian X, Liu W, Tian Z, Zhong L, Yan 
M, Zhang C, Zhang Z. MFAP5 and TNNC1: potential markers for predicting 
occult cervical lymphatic metastasis and prognosis in early stage tongue 
cancer. Oncotarget. 2017;8(2):2525–35. https:// doi. org/ 10. 18632/ oncot 
arget. 12446. PMID: 27713166; PMCID: PMC5356821.

 28. Yin JH, Elumalai P, Kim SY, Zhang SZ, Shin S, Lee M, Chung YJ. TNNC1 
knockout reverses metastatic potential of ovarian cancer cells by 
inactivating epithelial-mesenchymal transition and suppressing F-actin 
polymerization. Biochem Biophys Res Commun. 2021;547:44–51. https:// 
doi. org/ 10. 1016/j. bbrc. 2021. 02. 021. Epub 2021 Feb 13. PMID: 33592378.

 29. Guo J, Liu Y. INHBA promotes the proliferation, migration and invasion 
of colon cancer cells through the upregulation of VCAN. J Int Med Res. 
2021;49(6):3000605211014998. https:// doi. org/ 10. 1177/ 03000 60521 
10149 98. PMID: 34130530; PMCID: PMC8212385.

 30. Cui F, Qu D, Sun R, Zhang M, Nan K. NK cell-produced IFN-γ regulates cell 
growth and apoptosis of colorectal cancer by regulating IL-15. Exp Ther 
Med. 2020;19(2):1400–6. https:// doi. org/ 10. 3892/ etm. 2019. 8343. Epub 
2019 Dec 18. PMID: 32010315; PMCID: PMC6966233.

 31. Ruckova E, Muller P, Nenutil R, Vojtesek B. Alterations of the Hsp70/Hsp90 
chaperone and the HOP/CHIP co-chaperone system in cancer. Cell Mol 
Biol Lett. 2012;17(3):446–58. https:// doi. org/ 10. 2478/ s11658- 012- 0021-8. 
Epub 2012 Jun 5. PMID: 22669480; PMCID: PMC6275590.

 32. Antonacopoulou AG, Grivas PD, Skarlas L, Kalofonos M, Scopa CD, 
Kalofonos HP. POLR2F, ATP6V0A1 and PRNP expression in colorectal 
cancer: new molecules with prognostic significance? Anticancer Res. 
2008;28(2B):1221–7. PMID: 18505059.

 33. Eisa NH, Jilani Y, Kainth K, Redd P, Lu S, Bougrine O, Abdul Sater H, Pat-
wardhan CA, Shull A, Shi H, Liu K, Elsherbiny NM, Eissa LA, El-Shishtawy 
MM, Horuzsko A, Bollag R, Maihle N, Roig J, Korkaya H, Cowell JK, Chadli 
A. The co-chaperone UNC45A is essential for the expression of mitotic 
kinase NEK7 and tumorigenesis. J Biol Chem. 2019;294(14):5246–60. 
https:// doi. org/ 10. 1074/ jbc. RA118. 006597. Epub 2019 Feb 8. PMID: 
30737284; PMCID: PMC6462532.

https://doi.org/10.3390/cancers13102418
https://doi.org/10.3390/cancers13102418
https://doi.org/10.1002/1878-0261.12018
https://doi.org/10.1002/1878-0261.12018
https://doi.org/10.7150/jca.38796
https://doi.org/10.3892/ijo.2016.3716
https://doi.org/10.3892/ijo.2016.3716
https://doi.org/10.1186/s13059-015-0699-9
https://doi.org/10.3390/genes11080922
https://doi.org/10.3390/biom11111722
https://doi.org/10.3390/biom11111722
https://doi.org/10.3748/wjg.v20.i4.943
https://doi.org/10.3748/wjg.v20.i4.943
https://doi.org/10.1073/pnas.2017421118
https://doi.org/10.18632/aging.204291
https://doi.org/10.18632/aging.204291
https://doi.org/10.3389/fimmu.2021.796647
https://doi.org/10.3389/fimmu.2021.796647
https://doi.org/10.3389/fgene.2022.1008644
https://doi.org/10.1111/cas.13812
https://doi.org/10.1038/s41397-018-0029-1
https://doi.org/10.1038/s41397-018-0029-1
https://doi.org/10.1186/s13045-015-0180-y
https://doi.org/10.1186/s12967-020-02696-z
https://doi.org/10.1186/s12967-020-02696-z
https://doi.org/10.1158/0008-5472.CAN-22-1369
https://doi.org/10.1158/0008-5472.CAN-22-1369
https://doi.org/10.1371/journal.pone.0038464
https://doi.org/10.1016/j.ygeno.2006.03.021
https://doi.org/10.1016/j.ygeno.2006.03.021
https://doi.org/10.1093/jmcb/mjy075
https://doi.org/10.1128/MCB.00209-20
https://doi.org/10.1007/s11894-019-0725-2
https://doi.org/10.1007/s11894-019-0725-2
https://doi.org/10.3390/cancers14215242
https://doi.org/10.3390/cancers14215242
https://doi.org/10.1016/j.immuni.2017.12.007
https://doi.org/10.1016/j.immuni.2017.12.007
https://doi.org/10.1002/hep.30962
https://doi.org/10.18632/oncotarget.12446
https://doi.org/10.18632/oncotarget.12446
https://doi.org/10.1016/j.bbrc.2021.02.021
https://doi.org/10.1016/j.bbrc.2021.02.021
https://doi.org/10.1177/03000605211014998
https://doi.org/10.1177/03000605211014998
https://doi.org/10.3892/etm.2019.8343
https://doi.org/10.2478/s11658-012-0021-8
https://doi.org/10.1074/jbc.RA118.006597


Page 19 of 19Qian et al. BMC Medical Genomics          (2024) 17:127  

 34. Li W, Guo L, Tang W, Ma Y, Wang X, Shao Y, Zhao H, Ying J. Identification 
of DNA methylation biomarkers for risk of liver metastasis in early-stage 
colorectal cancer. Clin Epigenetics. 2021;13(1):126. https:// doi. org/ 10. 
1186/ s13148- 021- 01108-3. PMID: 34108011; PMCID: PMC8190869.

 35. Macartney-Coxson DP, Hood KA, Shi HJ, Ward T, Wiles A, O’Connor R, 
Hall DA, Lea RA, Royds JA, Stubbs RS, Rooker S. Metastatic susceptibility 
locus, an 8p hot-spot for tumour progression disrupted in colorectal liver 
metastases: 13 candidate genes examined at the DNA, mRNA and pro-
tein level. BMC Cancer. 2008;8:187. https:// doi. org/ 10. 1186/ 1471- 2407-8- 
187. PMID: 18590575; PMCID: PMC2488356.

 36. Cao J, Yan Q, Cancer Epigenetics T, Immunity. Immunotherapy Trends 
Cancer. 2020;6(7):580–92. https:// doi. org/ 10. 1016/j. trecan. 2020. 02. 003. 
Epub 2020 Mar 31. PMID: 32610068; PMCID: PMC7330177.

 37. Chen T, Wang Y, Nan Z, Wu J, Li A, Zhang T, Qu X, Li C. Interaction between 
macrophage extracellular traps and Colon cancer cells promotes Colon 
Cancer Invasion and correlates with unfavorable prognosis. Front Immu-
nol. 2021;12:779325. https:// doi. org/ 10. 3389/ fimmu. 2021. 779325. PMID: 
34925357; PMCID: PMC8671452.

 38. Khan U, Chowdhury S, Billah MM, Islam KMD, Thorlacius H, Rahman 
M. Neutrophil Extracellular traps in Colorectal Cancer Progression and 
Metastasis. Int J Mol Sci. 2021;22(14):7260. https:// doi. org/ 10. 3390/ ijms2 
21472 60. PMID: 34298878; PMCID: PMC8307027.

 39. Di Franco S, Turdo A, Todaro M, Stassi G. Role of type I and II interferons in 
Colorectal Cancer and Melanoma. Front Immunol. 2017;8:878. https:// doi. 
org/ 10. 3389/ fimmu. 2017. 00878. PMID: 28798748; PMCID: PMC5526853.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s13148-021-01108-3
https://doi.org/10.1186/s13148-021-01108-3
https://doi.org/10.1186/1471-2407-8-187
https://doi.org/10.1186/1471-2407-8-187
https://doi.org/10.1016/j.trecan.2020.02.003
https://doi.org/10.3389/fimmu.2021.779325
https://doi.org/10.3390/ijms22147260
https://doi.org/10.3390/ijms22147260
https://doi.org/10.3389/fimmu.2017.00878
https://doi.org/10.3389/fimmu.2017.00878

	Identification of DNA methylation characteristics associated with metastasis and prognosis in colorectal cancer
	Abstract 
	Background
	Materials and methods
	Data acquisition and preprocessing
	Differential analysis of methylation CpG sites
	Functional enrichment analysis
	Identification of DMCs associated with tumor metastasis in CRC
	 Construction of prognosis model and nomogram related to the PFS of CRC
	Immune microenvironment and microsatellite instability analysis
	 Tumor mutation burden analysis
	Immunohistochemical analysis
	Statistical analysis

	Results
	Identification of differential methylated CpG sites
	Methylation characteristics associated with CRC metastasis
	Identification of PFS related methylation signatures in CRC
	Nomogram model related to PFS of CRC
	Immune differences between risk subgroups
	Differences in TMB levels between risk subgroups

	Discussion
	Conclusion
	Acknowledgements
	References


