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Abstract
Background The genetic basis of type 2 diabetes (T2D) is under-investigated in the Middle East, despite the rapidly 
growing disease prevalence. We aimed to define the genetic determinants of T2D in Qatar.

Methods Using whole genome sequencing of 11,436 participants (2765 T2D cases and 8671 controls) from the 
population-based Qatar Biobank (QBB), we conducted a genome-wide association study (GWAS) of T2D with and 
without body mass index (BMI) adjustment.

Results We replicated 93 known T2D-associated loci in a BMI-unadjusted model, while 96 known loci were replicated 
in a BMI-adjusted model. The effect sizes and allele frequencies of replicated SNPs in the Qatari population generally 
concurred with those from European populations. We identified a locus specific to our cohort located between the 
APOBEC3H and CBX7 genes in the BMI-unadjusted model. Also, we performed a transethnic meta-analysis of our 
cohort with a previous GWAS on T2D in multi-ancestry individuals (180,834 T2D cases and 1,159,055 controls). One 
locus in DYNC2H1 gene reached genome-wide significance in the meta-analysis. Assessing polygenic risk scores 
derived from European- and multi-ancestries in the Qatari population showed higher predictive performance of the 
multi-ancestry panel compared to the European panel.

Conclusion Our study provides new insights into the genetic architecture of T2D in a Middle Eastern population and 
identifies genes that may be explored further for their involvement in T2D pathogenesis.
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Background
The prevalence of diabetes in the Middle East and 
North Africa (MENA) region is amongst the high-
est in the world at ∼ 16% and accounts for ∼ 18% of the 
world’s overall adult diabetic population of more than 
500  million individuals in 2021 [1]. Diabetes currently 
affects ∼ 1 in 6 adults in the MENA region and is pre-
dicted to affect ∼ 1 in 5 adults, equating to ∼ 136 million 
individuals with diabetes by 2045 [1]. Type 2 diabetes 
(T2D) accounts for ∼ 90% of all diabetes cases and has a 
strong genetic predisposition [2]. T2D is a chronic dis-
ease associated with high morbidity and mortality. Indi-
viduals with T2D exhibit macrovascular complications, 
including cardiovascular disease, which is the leading 
cause of death in T2D [3]. Moreover, around one-third of 
patients with T2D are affected by retinopathy and ∼50% 
of patients with T2D experience kidney disease and neu-
ropathy [4, 5]. Numerous studies have shown that obesity 
is a major risk factor of T2D onset and progression [6]. 
Up to 90% of T2D patients are in the overweight or obese 
category [7, 8].

A growing number of genome wide association stud-
ies (GWAS) on diabetes have identified hundreds of 
T2D-associated loci [9]. A meta-analysis of 32 GWAS 
comprising of 74,124 T2D cases of European ancestry 
identified 243 new candidate loci associated with T2D 
[10]. Another study on 62,892 cases of T2D of European 
ancestry led to the identification of 143 genetic variants 
in multiple loci associated with T2D [11], while a mul-
tiethnic GWAS meta-analysis covering over 1.4  million 
participants of European, African American, Hispanic, 
South Asian and East Asian ancestries led to the detec-
tion of 568 T2D associations, of which 318 were iden-
tified as novel risk loci [12]. Also, studies of East Asian 
populations led to the identification of ∼ 90 novel loci 
associated with T2D [13, 14] and the effect sizes were 
strongly correlated to Europeans [13, 14].

GWAS have reported several genes that are associated 
with pancreatic islet β-cell function, insulin sensitiv-
ity and glucose metabolism [15]. For instance, TCF7L2, 
KCNQ1, WFS1, HNF1B, SLC2A2, SLC30A8, CDKAL1, 
CDKN2A, CDKN2B, GCK, MTNR1B, and GIPR are all 
associated with pancreatic islet β-cell dysfunction [9]. 
The transcription factor 7-like 2 (TCF7L2), discovered 
in 2006, was the first locus to be extensively reported in 
GWAS and is the strongest genetic risk factor associ-
ated with T2D to date. Remarkably, TCF7L2 genetic vari-
ants have been replicated in different populations across 
European, Chinese, Caucasian, South Asian and African 
ancestries [11, 14, 16–18].

The majority of GWAS are based primarily on Euro-
pean and East Asian populations, while Middle Eastern 
populations remain largely under-studied. Investigations 
on replicating known T2D-risk loci in the MENA region 

have been previously conducted, including in Qatar [19] 
and Saudi Arabia [20, 21], while only select few GWAS 
on T2D have been conducted in the region including in 
Lebanon [22], Circassian and Chechen populations in 
Jordan [23] and an extended Arab family in the United 
Arab Emirates [24], with modest sample sizes ranging 
from 66 to 1384 individuals. GWAS conducted in Leba-
non reported only two T2D-associated loci; CDKAL1 
and TCF7L2 [22], while studies performed in Qatar also 
replicated only 2 variants in TCF7L2 [19] and several 
T2D-associated loci were replicated in Saudi Arabia [20, 
21]. Overall, a methodical GWAS on T2D in the MENA 
region is warranted due to the high and increasing T2D 
prevalence, specifically in Qatar, where obesity is recog-
nized as the major driver of T2D burden [25].

In this study, we performed the largest and most com-
prehensive GWAS of T2D in a Middle Eastern popula-
tion based on whole genome sequencing (WGS) of over 
11,000 subjects from the population-based Qatar Bio-
bank (QBB) cohort that included 2765 T2D cases and 
8671 controls. We also performed a transethnic meta-
analysis of our cohort with GWAS from multi-ancestry 
individuals (180,834 T2D cases and 1,159,055 controls) 
[26] and assessed the performance of polygenic risk scor-
ing panels derived from European and multi-ancestries, 
in the Qatari population. Our findings reveal genetic risk 
loci associated with T2D, which can be explored further 
to investigate their roles in T2D onset and progression.

Methods
Study participants
Study participants were recruited from the Qatar Bio-
bank (QBB). QBB collects information from native 
Qatari population and long-term residents (≥ 15 years) 
[7, 27]. The study cohort consisted of 14,409 participants 
(aged 18 to 89 years). All participants provided writ-
ten informed consent prior to participation. This study 
was approved by the institutional review boards of QBB 
(E-2019-QF-QBB-RES-ACC-0179-0104) and Hamad 
Bin Khalifa University, Doha, Qatar (Approval no. 2021-
3-78). All participants completed an approved and stan-
dardized questionnaire reporting past medical history, 
lifestyle, diet and physical activity [27]. Medical exami-
nation, physical measurements and collection of biologi-
cal samples (including blood, urine, and saliva) were also 
conducted.

Phenotypic data, biochemical measures and patient 
classification
Participants were determined to have diabetes based on 
self-reported diabetes status and self-reported use of dia-
betes medications. We also included those with newly 
diagnosed diabetes, based on measured HbA1c levels 
(HbA1c ≥ 6.5%). All biochemical assays were performed 
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at the clinical laboratory of Hamad Medical Corpora-
tion, accredited by the College of American Pathologists 
(CAP). Sandwich electrochemiluminescence immuno-
assay Elecsys C-Peptide kit (Roche, Basel, Switzerland) 
was used to measure serum C-peptide levels, while Tur-
bidimetric inhibition immunoassay (Tina-quant HbA1c 
Gen. 3 kit; Roche) was used to measure serum HbA1c. 
Enzymatic reference method with hexokinase was used 
to measure random glucose levels in serum using the 
COBAS instrument (Roche, Basel, Switzerland).

The study participants were classified into diabetes 
subtypes based on phenotypic data provided by QBB. 
First, we removed those with incomplete phenotype data 
(n = 30). Participants with T1DM (n = 71) were identified 
based on self-declared diabetes status, receiving insu-
lin treatment exclusively and with undetectable serum 
C-peptide levels (< 0.5ng/ml). Participants with T2DM 
(n = 2765) were identified based on self-declared diabe-
tes status, self-reported diabetes medication, or with 
HbA1c ≥ 6.5%. Those without diabetes and with HbA1c 
values between 5.7 and 6.4 were classified as prediabe-
tes (n = 2271). The remaining participants (n = 8671) were 
considered as diabetes free and were used in the analysis 
as population-based controls, without removing those 
with a family history of diabetes.

Whole-genome sequencing (WGS)
The Qatar Genome project (QGP) provided the WGS 
data of QBB study participants [28]. A description of 
WGS and quality control measures has been described 
previously [29]. Briefly, genomic DNA was extracted 
from peripheral blood using Qiagen MIDI kit (Qiagen, 
Germany), following the manufacturer’s protocol and 
using the automated QIASymphony SP instrument (Qia-
gen). The DNA integrity was assessed using Caliper Lab-
chip GXII (Perkin Elmer, USA) Genomic DNA assay and 
was quantified using the Quant-iT dsDNA Assay (Invit-
rogen, USA). Using the Illumina TruSeq DNA Nano kit 
(Illumina, San Diego, CA, USA), whole-genome librar-
ies were prepared. Sequencing genomic libraries was 
performed using HiSeq X Ten (Illumina) for a minimum 
average coverage of 30X at Sidra Clinical Genomics 
Laboratory Sequencing Facility (Sidra Medicine, Doha, 
Qatar). Quality control was conducted using FastQC 
(v0.11.2) on the generated files and reads were aligned to 
GRCh38 reference genome. Mapped reads were quality-
controlled with Picard (v1.117). For all study participants, 
a combined variant call file (gVCF) was created contain-
ing all genetic variations identified in the QBB study 
participants.

Genotyping and quality control
WGS from 14,409 QBB participants was performed by 
the QGP as previously described [29]. PLINK-v2.0 [30] 

and Hail 0.2 [31] were utilized for sample-level and vari-
ant-level quality controls on the multisample variant call 
format (VCF) file. Variants with minor allele frequency 
(MAF) < 0.1%, genotype call rate < 90%, mean depth 
coverage < 10X and Hardy-Weinberg P-value < 1 × 10− 6 
were removed. A total of 21,318,610 autosomal variants 
remained for the GWAS. Next, we eliminated samples 
with call rate of less than 95% (n = 18), excess heterozy-
gosity (n = 34), duplicate samples (n = 45), and samples 
with ambiguity between self-reported gender and geneti-
cally determined sex (n = 251). Furthermore, we used 
multidimensional scaling (MDS) by PLINK v2.0 to iden-
tify population outliers which resulted in the removal 
of 253 participants, leaving a total of 13,808 samples for 
downstream analysis.

Genome-wide association study
We performed GWAS analysis using a generalized mixed 
model association test implemented in the Scalable and 
Accurate Implementation of Generalized mixed model 
(SAIGE) [32]. SAIGE is efficient in testing the genetic 
association of large samples with case-control ratio 
imbalance and sample relatedness using the saddlepoint 
approximation [32]. To test the association, we adjusted 
our model for covariates including age, genderand 
genetic principal components (PC1-PC4), and performed 
the analysis with and without body mass index (BMI)-
adjustment. We applied the standard genome-wide sig-
nificant association threshold (P < 5 × 10− 8).

We identified previously reported genetic variants pri-
marily based on data downloaded from the GWAS cata-
log. A SNP was considered to be novel if no previous 
reports were published in the GWAS catalog, Phenoscan-
ner [33], or The Human Genetics Amplifier (HuGeAMP) 
[34] and NCBI databases (accessed on 1-April-2023) 
with genome wide significant association (P < 5 × 10− 8) 
with diabetes. Also, a locus was considered novel if the 
lead SNP is mapped more than 500 kb from a previously 
reported locus and is not in linkage disequilibrium (LD) 
(r2 < 0.2) with the lead SNP of the previously reported 
locus. Regional associations plots were generated using 
the LocusZoom tool [35] with LD calculated from QGP 
data using PLINK. While recombination rates were based 
on the chromosome build GRCh38. The genomic infla-
tion, Quantile-Quantile plots and Manhattan plots were 
generated using R (ver. 3.4.0).

Genome-wide association meta-analysis
We performed a meta-analysis of our GWAS findings 
from the BMI-unadjusted model and summary statis-
tics from a previously published meta-analysis of T2D 
GWAS (unadjusted for BMI). The study by Mahajan 
et. al., included 180,834 T2D cases and 1,159,055 con-
trols of multi-ancestry, comprising of 51.15% European, 
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28.38% East Asian, 8.28% South Asian, 6.62% African and 
5.57% Hispanic individuals [26]. Summary statistics of 
this study were downloaded from the DIAbetes Genetics 
Replication and Meta-analysis (DIAGRAM) consortium 
[36]. METAL was used to combine association statistics 
in a fixed-effect meta-analysis [37].

Colocalization analysis of genome-wide significant T2D 
associations
We conducted Bayesian colocalization analysis for novel 
T2D association variants identified in the meta-analysis. 
We used COLOC package using R (ver. 3.4.0) to assess 
colocalization evidence of GWAS and eQTL signals 
across specific GTex v8 single-tissue gene expression. 
We used the default posterior probabilities (p1 = 1 × 10− 4, 
p2 = 1 × 10− 4 and p12 = 1 × 10− 5). Colocalization was 
determined based on posterior probabilities PPH4 greater 
than 0.8, which indicates that a same causative variant is 
responsible for the observed T2D association and eQTL 
signals.

Analysis of polygenic risk score
Polygenic scores (PGS): PGS000036 [10] and PGS000804 
[38], were assessed in this study. The scoring files derived 
from European ancestry (PGS000036) and multi- ances-
try (PGS000804) GWAS were downloaded from the 
PGS catalog (http://www.pgscatalog.org). We used the 
European-derived PGS based on 171,249 risk variants, 
due to the large sample size used in score development, 
which included 117,946 individuals of European ancestry 

[10]. Mahajan et. al., used the pruning and thresholding 
method by using variants that were in LD (r2 < 0.6) with 
a significance threshold of P < 0.1, which led to the devel-
opment of a large SNP scoring panel based on 171,249 
variants [10]. We also used the multi-ancestry derived 
PGS devised by Polfus et. al., [38], based on 582 risk vari-
ants reported from the largest published multi-ances-
try (Europeans, African Americans, Hispanics, South 
Asians and East Asians) meta-analysis for T2D (228,499 
cases and 1,178,783 controls) [12]. Polfus et al., used a 
thresholding method with the genome wide significant 
(P < 5.0 × 10− 8) variants obtained from the multi-ancestry 
GWAS from 2,814,564 variants [38]. The performance of 
PGS were assessed on the QBB cohort using the–score 
function in PLINK ver. 2.0 [30]. Briefly, the PGS were 
computed by calculating the sum of risk alleles associated 
with a trait, weighted by the risk allele effect size from 
polygenic risk score panels. A total of 469 risk variants 
from European-derived and 149,851 risk variants from 
the multi-ancestry derived polygenic panels were identi-
fied in our cohort. In concordance with Mahajan et. al., 
[10], and Polfus et. al., [38], we evaluated the predictive 
performance of PGS000036 and PGS000804 on the QBB 
cohort by fitting a logistic regression model, with PGS 
sum and adjusting for covariates including, gender, age, 
and principal components (PC1-PC4), with and without 
BMI. The performance assessment was also based on 
determining the area under the receiver operating char-
acteristic curve (AUC) for each model and was calculated 
using R (ver. 3.4.0) to determine whether the two PGS are 
translatable in the QBB cohort.

Results
Study overview
This study was based on WGS and phenotypic data of 
8671 controls and 2765 T2D cases. The clinical character-
istics of the study cohort are listed in Table 1. The mean 
age of the control participants was younger (35 ± 10.7 
years), compared to cases (51 ± 11.8 years). Altogether, 
the majority of T2D cases were classified within the over-
weight (30.6%) or obese (60.8%) categories and presented 
with a strong family history of diabetes.

Association testing was performed using a mixed 
model correcting for gender, age, relatedness, and popu-
lation structure (genetic principal components PC1-PC4) 
with or without BMI correction, due to the association 
between T2D and obesity. The Manhattan plots and 
Q-Q plots of GWAS for the BMI-unadjusted and BMI-
adjusted models are illustrated in Fig. 1. The Manhattan 
plot displayed multiple genome-wide significant loci on 
chromosome 10 and chromosome 22 in the BMI-unad-
justed model (Fig.  1A), and only one locus on chromo-
some 10 for the BMI-adjusted model (Fig. 1C). Adjusting 
for covariates with or without BMI resulted in a genomic 

Table 1 Clinical characteristics of QBB study cohort for GWAS
Control Cases

Number of participants (n; %)♦ 8671 (75.8%) 2765 (24.3%)
Age (y) (mean ± SD) 35 ± 10.69 51 ± 11.8*
Male (n; %) 3819 (44%) 1156 (42%)
Female (n; %) 4852 (56%) 1609 (58%)
BMI (kg/m²) 28.89 ± 5.97 32.22 ± 5.92*
BMI Category: **
 Underweight 239 (2.8%) 3 (0.1%)
 Normal weight 2348 (27.1%) 225 (8.1%)*
 Overweight 3199 (36.9%) 846 (30.6%)*
 Obese 2879 (33.20%) 1681 (60.8%)*
 N/A 6 (0.1%) 10 (0.4%)
HbA1c (%) 5.18 ± 0.29 7.39 ± 1.78*
C-peptide (ng/ml) 2.23 ± 1.33 2.85 ± 1.68*
Family History of Diabetes:
 Father (n; %) 3688 (42.5%) 1291 (46.7%)*
 Mother (n; %) 3741 (43.1%) 1711 (61.9%)*
 Both parents (n; %) 1845 (21.3%) 915 (33.1%)*
¨Study cohort comprised of 11,436 participants. Quantitative variables are 
presented as mean ± standard deviation, qualitative variables are presented 
as number (% of total in each group), *Statistically significant (P < 0.001) 
compared to non-diabetes controls. BMI: body mass index. **BMI categories 
were as follows: underweight (< 18.5 kg/m2) normal weight (18.5 to 24.9 kg/m2), 
overweight (25 to 29.9 kg/m2) and obesity (≥ 30 kg/m2)

http://www.pgscatalog.org
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inflation factor λGC value of around 1 in both models, 
suggesting no evidence of genomic inflation (Fig.  1B & 
D).

Analysis of previously reported loci associated with T2D in 
the QBB study cohort
We replicated 220 SNPs (from 93 loci) in the BMI-
unadjusted model and 244 SNPs (from 96 loci) in the 
BMI-adjusted model (P < 0.05) that have been previ-
ously associated with T2D at genome-wide significance 
(Supplementary Tables 1 & 2). 203 SNPs were common 
to both models. 15 SNPs showed genome-wide signifi-
cance (P < 5 × 10− 8) in BMI-unadjusted model, while 19 
SNPs showed genome-wide significance in BMI-adjusted 
model, all located at the TCF7L2 locus. Moreover, 4 SNPs 
were solely replicated in the BMI-adjusted model. These 
SNPs showed strong LD (r2 > 0.7) with the highest-rank-
ing SNP in TCF7L2; rs7903146 (BMI-unadjusted model 
P = 4.26 × 10− 13 and BMI-adjusted model P = 6.27 × 10− 16).

Next, we compared the allele frequencies (AF) and 
effect sizes (BETA) of replicated SNPs in our data to 
those previously reported in the GWAS catalog (Fig. 2). 
We observed moderate correlation of allele frequencies 
(BMI-unadjusted, R2 = 0.66; BMI-adjusted, R2 = 0.64) with 
those reported in the GWAS catalog. The majority of the 
identified variants showed consistent direction of effect 
(Fig.  2B & D) with good correlations to those reported 
in the GWAS catalog (BMI-unadjusted, R2 = 0.52; BMI-
adjusted, R2 = 0.56). However, 12 SNPs from the BMI-
unadjusted model and 10 SNPs from the BMI-adjusted 
model showed opposite effects but their association p val-
ues in our data were weak (P = 0.01 to 0.05). Moreover, 7 
SNPs with opposite effect size overlapped in both mod-
els including rs2206734, rs6857, rs7841082, rs3132524, 
rs1872635, rs4384608 and rs6556925.

Genetic architectures amongst ethnic groups have 
diverse differences in allele frequencies and disease sus-
ceptibility [39]. Subsequently, we assessed the differences 

Fig. 1 Manhattan Plots and Q-Q Plots for T2D BMI-unadjusted and BMI-adjusted Models. Manhattan plot (A, C) and Q-Q plot (B, D) for BMI-adjusted (A, 
B) and for BMI-unadjusted (C, D) GWAS. Manhattan plots represent SNPs (dots) plotted on x-axis in accordance with chromosome position against their 
corresponding -log10(P). The red horizontal line represents the threshold for genome-wide significance (P < 5 × 10− 08). Q-Q plots represent the quantile 
distribution of observed P values versus the quantile distribution of expected P values for all SNPs
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in allele frequency of replicated variants across popu-
lations (European, African, and South Asian), in rela-
tion to the QBB cohort (Supplementary Fig.  1). We 
observed a high correlation between QBB cohort and 
European (R2 = 0.89), followed by South Asian (R2 = 0.79) 
populations and moderate correlation with the Afri-
can population (R2 = 0.48) for variants replicated in the 
BMI-unadjusted model. Similarly, QBB cohort and Euro-
pean (R2 = 0.87) and South Asian (R2 = 0.78) populations 
showed high correlation, while the African population 
(R2 = 0.47) showed moderate correlation for variants 
replicated in the BMI-adjusted model (Supplementary 
Fig. 1).

Identification of a novel locus associated with T2D
We identified a novel locus in the BMI-unadjusted analy-
sis model tagged by rs143508949, which showed genome-
wide significance (P = 1.81 × 10− 8; BETA = 0.650), on 
chromosome 22q13.1; located between Apolipoprotein 
B mRNA editing enzyme catalytic subunit 3  H (APO-
BEC3H) and Chromobox 7 (CBX7) genes (Fig. 3A). This 
SNP was also associated with T2D in the BMI-adjusted 
model but it did not reach genome wide significance 
(P = 6.8 × 10− 7). The identified novel susceptibility locus 
existed outside of regions previously associated with T2D 
risk, while no significant variant-trait associations have 
been reported for rs143508949 in PhenoScanner or NCBI 
database [33]. The allele frequency of rs143508949 in the 
QGP cohort was substantially higher (0.022) compared 

Fig. 2 Comparison of Allele Frequencies and Effect sizes (BETA) of Replicated SNPs Identified in the GWAS Catalog and QBB Cohort. Correlation of allele 
frequencies for replicated loci between QBB and GWAS catalog; A-B. BMI-unadjusted and C-D. BMI-adjusted models. Blue dots represent SNPs with simi-
lar direction of effect size, while red dots represent SNPs with opposite direction of effect size
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to African (0.0015) and South Asian populations (0.001). 
In contrast, the AF of rs143508949 was relatively similar 
to the European population (0.021).

Identification of novel T2D-associated locus from 
transethnic meta-analysis of GWAS
To strengthen the power of our study, we performed a 
transethnic meta-analysis by combining the results of 
the BMI-unadjusted model from our analysis cohort with 
summary statistics from the study by Mahajan et. al., 
which included 80,834 T2D cases and 1,159,055 controls 
of multi-ancestry populations [26]. We did not perform 
the analysis on the BMI-adjusted model, since Mahajan 
et. al., did not adjust for BMI in their overall analysis for 
the identification of T2D-associated SNPs.

We first investigated the AF and BETA of SNPs that 
were previously reported at genome-wide significance 
(P < 5 × 10−8) in the study by Mahajan et. al., [26] and 
showed nominal significance (P < 0.05) in the QBB cohort 
(Supplementary Fig.  2). We observed a high correlation 
of AF with European population (R2 = 0.88), followed by 
South Asian (R2 = 0.83) populations and moderate cor-
relation with African population (R2 = 0.44). Also, the 
majority of SNPs showed consistent direction of effects, 
with a moderate effect size correlation (R2 = 0.45). Next, 
we conducted a meta-analysis which resulted in 19,385 
genome-wide significant SNPs (P < 5 × 10− 8) associ-
ated with T2D from the combined dataset (Supplemen-
tary Table 3). The highest-ranking SNP in the combined 
dataset was rs34872471 (P = 2.68 × 10− 528), located in the 

Fig. 3 Regional Association Plots of Novel Loci showing Genome-wide Significant Association with T2D. The plot shows the chromosomal position of (A) 
rs143508949 and (B) rs2510095 plotted against -log10P values (based on NCBI human genome build 38). The novel SNP (diamond) and other detected 
SNPs (circle) are color coded based on LD (square correlation (r2)). (C) The lead SNP rs2510095 is a significant eQTL for DYNC2H1 in Thyroid tissues. Box 
and whiskers plot shows DYNC2H1expression by rs2510095 genotypes

 



Page 8 of 12Elashi et al. BMC Medical Genomics          (2024) 17:115 

TCF7L2 gene. All genome-wide signals were located 
in known T2D-susceptibility loci except for one locus 
located on chromosome 11 (q22.3) within the Dynein, 
Cytoplasmic 2, Heavy chain 1 (DYNC2H1) gene, tagged 
by rs2510095, which reached genome-wide significance 
(P = 4.18 × 10− 8; Beta = 0.0299; effect allele = T; other 
allele = A) in the transethnic meta-analysis (Fig. 3B) with 
QBB cohort. The identified novel SNP is not in LD with 
any previously known signal associated with T2D. Of 
note, while DYNC2H1 has not been previously associated 
with T2D, it has been associated with gestational DM 
in the PhenoScanner but the association did not reach 
genome-wide significance. Also, rs2510095 has a strong 
expression quantitative trait locus (eQTL) for DYNC2H1 
expression in thyroid tissues in the GTEx portal (Fig. 3C), 
and thyroid dysfunction is associated with increased T2D 
risk [40].

Next, to assess whether the identified distinct T2D 
signals are implicated in T2D and tissue-specific gene 
expression (eQTL), we performed Bayesian colocaliza-
tion analysis, which showed strong evidence of rs2510095 
as a shared eQTL-GWAS signal at the novel locus, 
DYNC2H1 identified from the meta-analysis, with a high 
posterior probability 4 (PP4 = 0.885).

Assessing the performance of T2D polygenic risk scores in 
the Qatari cohort
We evaluated the predictive performance of applying 
two PGS panels derived from GWAS of European and 
multi-ancestry populations on the QBB cohort. We used 
the developed scoring data accessible in the Polygenic 
Score Catalog (http://www.pgscatalog.org) [10]. We first 
evaluated the predictive performances of the PGS panels 
derived from the European- and multi- ancestry popula-
tions by assessing the Area Under the Receiver Operating 
characteristic curve (AUC). For this analysis, we included 
all control participants (8671 non-diabetes and 2271 pre-
diabetes) to allow comparison with published data from 
other ancestries [38, 41, 42]. The predictive performance 
of the European-ancestry PGS when applied to QBB 
cohort was low, yielding an AUC of 0.56 compared to its 
performance when applied to participants of European 
(AUC = 0.66; Fig.  4A). Notably, inclusion of covariates 
such as age, gender and BMI greatly improved the predic-
tive performance of European-ancestry PGS model when 
applied to QBB (AUC = 0.83), which was even higher than 
its application on Europeans (AUC = 0.73, Fig. 4C). How-
ever, this is mostly explained by the significant age dif-
ferences between cases and controls in the QBB cohort 
(Table 1). Next, we selected a random set of sex and age-
matched cases and controls from our QBB cohort (Sup-
plementary Table 4) and repeated the PGS analysis which 
resulted in a lower performance (AUC = 0.61) compared 
to that reported for European ancestry (AUC = 0.73).

Similarly, the Multi-ancestry PGS showed moder-
ate predictive performance on QBB cohort (AUC = 0.66; 
Fig. 4B), which was improved by the inclusion of covari-
ates (AUC = 0.83; Fig. 4D). Moreover, a similar trend was 
reported when the Multi-ancestry PGS was applied on 
Europeans (AUC = 0.66 improved to AUC = 0.83 with 
inclusion of covariates [38, 41, 42]. Assessing the pre-
dictive performance of Multi-ancestry PGS on the age-
matched cohort also resulted in lower performance 
(AUC = 0.65) compared to that previously reported 
for European ancestry (AUC = 0.83) but higher than 
the European PGS applied to the age matched cohort 
(AUC = 0.61).

Discussion
Over 700 T2D risk loci have been identified in recent 
years in studies predominantly conducted on European, 
Asian and African populations [43]. However, studies 
on the genetic basis of T2D are under-investigated in 
the Middle East, despite the rapidly increasing disease 
prevalence. To our knowledge, this is the first popula-
tion-based GWAS conducted for T2D in Qatar and in the 
wider Middle Eastern region.

WGS enables complete coverage of the human genome 
and facilitates the identification of loci and strong func-
tional candidate genes associated with a trait. Com-
parison of the allele frequencies and effect sizes of the 
replicated genetic variants to the GWAS catalog and 
1000 Genome Project populations (African, European, 
and South Asian) showed high similarity in effect-size 
distribution for the majority of the replicated genetic 
variants.

We detected several loci that have been previously 
associated with T2D, including variants in TCF7L2, 
which has a strong genetic association with T2D. We 
also identified a genome-wide significant locus tagged 
by rs143508949 on chromosome 22 (q13.1), located 
between APOBEC3H and CBX7 genes in the BMI-
unadjusted model. rs143508949 was not statistically sig-
nificant in the study by Mahajan et. al., [26], however a 
nearby SNP located 123 kb away showed association with 
T2D in the Mahajan Study but at a less stringent P value 
(rs2076109; P = 6.5 × 10− 4). APOBEC3H is a member of 
the Apolipoprotein B mRNA Editing Catalytic Polypep-
tide-like (APOBEC) family, which has been previously 
reported to have a significant impact on the instability 
of cancer genome [44]. Moreover, APOBEC3 proteins 
can inhibit retroelements (Res) such as Alu. Hypometh-
ylation levels of Alu are associated with high fasting 
blood sugar, HbA1c and blood pressure in leukocytes of 
T2D patients [45]. In addition, CBX7 is a component of 
Polycomb group (PcG) of proteins, which form Polycomb 
Repressive complexes (PRCs) to regulate gene expression 
through histone modifications [46]. PcG proteins play 

http://www.pgscatalog.org
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important roles in pancreatic differentiation, homeosta-
sis and β-cells maturation. Studies have shown that the 
dysregulation of epigenetic mechanisms mediated by 
PRCs is a hallmark of β-cell failure in diabetes. Moreover, 
the dysregulation of PRC contributes to transcriptional 
changes associated with β-cell dysfunction in T2D [47, 
48]. These reports suggest that variants in these genes 
could impact T2D development and progression. More-
over, while a SNP between APOBEC3H and CBX7 was 
previously associated with coronary artery calcified ath-
erosclerotic plaque in diabetes subjects of African Amer-
ican ancestry, it did not show genome-wide significance 
[49]. Overall, validation in a replication cohort is required 
to ascertain the genome-wide association between our 
identified SNP and T2D.

The transethnic meta-analysis led to the identification 
of a novel SNP, rs2510095 in a novel locus in DYNC2H1 
gene that reached genome-wide significance. To our 
knowledge DYNC2H1 has not previously been associ-
ated with T2D but has been associated with lipid stor-
age and other syndromes including Jeune syndrome and 
Short rib-polydactyly syndrome [50–52]. Knock-down 
of DYNC2H1 increased lipid accumulation in adipocytes 
[52], while the protein encoded by DYNC2H1 is a com-
ponent of the cytoplasmic dynein-2 complex in cilia and 
plays a vital role in cilia biogenesis and signal transduc-
tion [53]. Inhibition of cilia motility impaired Calcium 
(Ca2+) influx and insulin secretion [54] and cilia-related 
genes have been shown to be dysregulated in T2D 
patients and associated with obesity [55]. The lead SNP 

Fig. 4  The predictive performances and translatability of T2D polygenic risk scoring panels derived from European- and multi-ancestries. The predictive 
performances of PGS derived from the European ancestry (PGS000036) and multi-ancestry (PGS000804) when applied to participants from QBB cohort 
and other ancestries was assessed by the area under the receiver operating curves (AUC) values. (A) Bar plots show the predictive performances of the 
European-ancestry PGS when applied to QBB participants and Europeans [35], and (B) the predictive performances of multi-ancestry PGS when applied 
to participants from QBB, European, African and Hispanic or Latin American ancestries [32] in the basic model (without covariate adjustment). (C) Bar plots 
show the predictive performances of the European-ancestry PGS when applied to QBB and European [34] ancestries and (D) the predictive performances 
of multi-ancestry PGS when applied to participants from QBB, European, African and Hispanic or Latin American ancestries in the full model (with covari-
ate adjustment). Error bars represent 95% confidence interval for AUC. *Predictive performance of the two PGS showed statistical significance (P < 0.05) 
in all tested conditions
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from this locus also has a strong eQTL for DYNC2H1 
expression in thyroid tissue. Our findings highlight the 
association between a novel variant in DYNC2H1 with 
T2D, which may be explored further.

The PGS panel derived from multi-ancestry GWAS 
showed higher predictability and translatability than 
European ancestry-based GWAS, when implemented 
to the QBB cohort. The performance metrics of the 
European ancestry PGS panel for T2D, when applied 
to our cohort showed lower predictive performance 
(AUC = 0.57) compared to its application on European 
Cohorts (AUC = 0.66) [41]. These results are in accor-
dance with a previously published study based on QBB 
cohort for several other clinically relevant traits [29]. 
Interestingly, our analyses showed that the perfor-
mance of European PGS was higher in QBB cohort 
(AUC = 0.83) when age, sex, and BMI were included in 
the model compared to European cohort (AUC = 0.73) 
[41]. This is mostly explained by the differences in age 
between cases and non-diabetes controls in our cohort 
since similar analysis performed on a random subset of 
age- and sex-matched individuals yielded lower AUC of 
0.61. In contrast, multi-ancestry PGS when applied to 
European cohort showed similar predictive performance 
(AUC = 0.66) [38], compared to QBB cohort (AUC = 0.66). 
While, the predictivity increased to (AUC = 0.83) for the 
European cohort [38] and for QBB cohort (AUC = 0.83) 
when age, sex and BMI were included in the model 
but this was mostly driven by age differences between 
cases and controls in our cohort. The high performance 
observed following inclusion of covariates is reported by 
several studies, demonstrating the association of BMI 
and age with increasing T2D risk [56, 57]. Moreover, 
studies have also shown that disease prediction in dia-
betes and cancer is enhanced using multiethnic based 
PGS panels [58–60]. However, while the multi-ancestry 
derived PGS performed better in the Qatari population 
in the sex- and age-matched cohort compared to the 
European-derived PGS, its performance was still lower 
compared to that applied to Europeans. These findings 
highlight the importance of deriving a Qatari-specific 
PGS with higher predictive performance.

Our study has several limitations. Although this is the 
largest study in a MENA population, but still relatively 
small compared to the latest GWAS in European ances-
tries. Also, our control group was younger than those 
with T2D, although we have adjusted for age in our 
GWAS analysis. Moreover, we were unable to derive a 
Qatari-specific PGS panel due to the lack of a separate 
cohort to evaluate its performance. Overall, despite these 
challenges the identified novel loci and genetic variants 
highlighted novel potential targets for T2D etiology 
in Qatar, which may be explored further in functional 

studies to determine the molecular pathways affected by 
them.

Conclusion
We conducted the largest GWAS of T2D in the MENA 
region and replicated many previously reported loci and 
identified a novel susceptibility locus on chromosome 
22. The majority of replicated loci showed consistent 
direction of effect and high allele frequency correlation 
compared to previous reports. Our trans-ethnic GWAS 
meta-analysis identified one additional novel suscep-
tibility locus tagged by a SNP located in DYNC2H1, 
which is also associated with expression in tissues rel-
evant to insulin resistance. Assessing PGS derived from 
European- and multi-ancestries in the Qatari popula-
tion showed higher predictive performance of the multi-
ancestry panel compared to the European panel. Our 
study provides new insights into the genetic architecture 
of T2D in the Middle Eastern population of Qatar.
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