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Abstract 

Background  Pathway mutations have been calculated to predict the poor prognosis and immunotherapy resist-
ance in head and neck squamous cell carcinoma (HNSCC). To uncover the unique markers predicting prognosis 
and immune therapy response, the accurate quantification of pathway mutations are required to evaluate epithelial-
mesenchymal transition (EMT) and immune escape. Yet, there is a lack of score to accurately quantify pathway 
mutations.

Material and methods  Firstly, we proposed Individualized Weighted Hallmark Gene Set Mutation Burden (IWHMB, 
https://​github.​com/​YuHon​gHuang-​lab/​IWHMB) which integrated pathway structure information and eliminated 
the interference of global Tumor Mutation Burden to accurately quantify pathway mutations. Subsequently, to fur-
ther elucidate the association of IWHMB with EMT and immune escape, support vector machine regression model 
was used to identify IWHMB-related transcriptomic features (IRG), while Adversarially Regularized Graph Autoencoder 
(ARVGA) was used to further resolve IRG network features. Finally, Random walk with restart algorithm was used 
to identify biomarkers for predicting ICI response.

Results  We quantified the HNSCC pathway mutation signatures and identified pathway mutation subtypes using 
IWHMB. The IWHMB-related transcriptomic features (IRG) identified by support vector machine regression were 
divided into 5 communities by ARVGA, among which the Community 1 enriching malignant mesenchymal compo-
nents promoted EMT dynamically and regulated immune patterns associated with ICI responses. Bridge Hub Gene 
(BHG) identified by random walk with restart was key to IWHMB in EMT and immune escape, thus, more predictive 
for ICI response than other 70 public signatures.
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Conclusion  In summary, the novel pathway mutation scoring-IWHMB suggested that the elevated malig-
nancy mediated by pathway mutations is a major cause of poor prognosis and immunotherapy failure in HNSCC, 
and is capable of identifying novel biomarkers to predict immunotherapy response.

Keywords  Pathway Mutation Burden (PMB), Tumor Mutation Burden (TMB), Functional genomics, Polyomics, 
Transcriptome

Introduction
As the seventh malignancy worldwide, Head and Neck 
Squamous Cell Carcinoma (HNSCC) caused nearly 
93,000 incidence and 470,000 deaths in 2020 [1]. Even 
with the rapid advances in diagnosis and treatment, 
only 40% of HNSCC patients survived 5 years after inci-
dence [2]. Although immune checkpoint inhibitor (ICI) 
has shed new light on cancer treatment, through which 
a variety of cancers have gotten benefits, only 30% of 
HNSCC patients respond to ICI [3]. As a malignancy 
with epithelial origin, HNSCC is highly prone to EMT 
which increases malignancy and immune escape result-
ing in poor prognosis and ICI resistance. Interestingly, 
mutations in some driver genes or pathways have been 
found predictive of HNSCC prognosis and ICI response 
[4–6]. However, whether these mutations are involved 
in EMT, and how they enhance malignancy and immune 
escape remain elusive. The association of mutations 
in the key pathways or genes with HNSCC EMT and 
immune escape provides novel perspectives to unveil the 
biomarkers for HNSCC prognosis and ICI response.

Compared to the changes in copy number and meth-
ylation which mainly affect gene expression, somatic 
mutations are the most widespread genomic alterations 
affecting not only gene expression, but also gene func-
tion. However, in tumorigenesis, the biological con-
text and the heterogeneity of somatic mutations among 
patients make the functional annotation of somatic muta-
tions extremely complicated. Since somatic mutations are 
specific in certain pathways or biological processes [7, 8], 
integrating the somatic mutations in terms of pathways 
and specific biological processes is an optimal strategy 
to study the role of somatic mutations in tumorigenesis. 
Therefore, PMB (also called Pathway Based Tumor Muta-
tional Burden [9, 10], Pathway Instability [11] or Pathway 
Mutation Perturbation [7], etc.) is proposed and exerts a 
powerful potential in predicting cancer phenotype (prog-
nosis [7], classification [11], drug response [12, 13] (espe-
cially to ICI [7, 10, 14]) etc.). However, current PMB still 
have limitations, such as the functional redundancy of 
the selected pathways or gene sets, the concept as popu-
lation index, as well as the ignorance of the effect of TMB 
and the location of somatic mutations in pathways.

Although somatic mutations have successfully pre-
dicted the responses to targeted drugs, they are less 

effective than gene expression profiles in predicting can-
cer phenotype because gene mutations are transmitted 
through complex networks to influence specific gene 
expression driving cancer progression [15]. Cancer data-
bases, such as The Cancer Genome Atlas (TCGA), allow 
scholars to construct and predict associations between 
genomic mutations and transcriptomic perturbations 
by providing a wealth of omics data. Way et  al. pre-
dicted RAS pathway mutations based on the transcrip-
tome using elastic networks [16]; Schubert exploited 
multi-variable linear regression model to distinguish the 
responses of specific pathway from tremendous pathway 
interference [17]; Evan et al. combined multiple network 
algorithms to propose Tumor Checkpoints [18], the key 
genes linking upstream mutations to downstream tran-
scriptome perturbations. These examples suggest that 
Cancer Functional Genomics model of genome-tran-
scriptome-phenotype provides an unique paradigm for 
cancer system research.

In this study, we improved an algorithm for PMB cal-
culation and proposed the notion of IWHMB. We devel-
oped the R package called IWHMB. Then, by combing 
machine learning and network algorithms, we revealed 
the association of IWHMB with cancer phenotype, 
IWHMB of core pathways and biological processes driv-
ing cancer progression and immune transcriptome alter-
ations via BHG. Finally, we prove that BHG outperforms 
the existing gene signatures in predicting ICI response. 
The workflow for this study is shown in Fig. 1.

Materials and methods
Data source
1 Genomic data (Somatic mutation and copy number 
variation, Level 3), transcriptomic data (RNA sequenc-
ing, Level 3), and the corresponding clinical data of 33 
cancers are downloaded from The Cancer Genome Atlas 
(TCGA) database (https://​portal.​gdc.​cancer.​gov/). 2 TCGA 
HNSCC cohort and Chen’s cohort: data type and down-
load location are same as those of pan cancer cohort. 3 
GEO HNSCC cohort: Transcriptomic data and clinical 
data of five independent HNSCC cohorts were down-
loaded from Gene Expression Omnibus database (GEO, 
https://​www.​ncbi.​nlm.​nih.​gov/​geo/), GSE65858, GSE39366, 
GSE40774, GSE41613, and GSE117973 (Additional file  2: 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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Table  S1). 4 Mouse OSCC cell line: Transcriptome data 
(RNA sequencing, Level 3) are downloaded from GEO 
database, GSE153383. 5 ICI Cohorts: transcriptome data 
are obtained from 12 public database ICI cohorts, including 
IMvigor210 (2018 anti PDL1 Urothelial_Cancer) [19], Braun 
et  al. (2020 PD1_CCRCC) [20], Hugo W et  al. (2016 anti 
PD1_Met_Melanoma GSE78220) [21], Riaz N et  al. (2017 
anti PD1_Melanoma GSE91061) [22], Aoki H et  al. (2021 
anti-PD1_STAD GSE154538) [23], Rose TL et al. (2021 ICI_
Bladder_Cancer GSE176307) [24]. Liu et al. (2019 anti PD1 
Met Melanoma) [25], Prat et  al. (2017 anti PD1 NSCLC, 
HNSCC and Melanoma GSE93157) [26], Gide et al. (2019 
anti PD1 + CTLA4 Melanoma) [27], Lauss et al. (2017 ACT 
Melanoma GSE100797) [28], JaeWon et al. (2020 anti PD1 
NSCLC GSE126044), Nathanson et  al. (2017 anti CTLA4 
Melanoma) [29]. Braun et al. (2020 PD1_CCRCC), Nathan-
son et  al. (2017 anti CTLA4 Melanoma), Liu et  al. (2019 
anti PD1 Met Melanoma), Hugo W et al. (2016 anti PD1_
Met_Melanoma GSE78220) and Lauss et  al. (2017 ACT 
Melanoma) have matching somatic mutation data. 6 Two 
scRNA-seq data (human HNSCC and mouse OSCC cell 
line): Transcriptomic data are downloaded from the GEO 
database, GSE103322 and GSE153383. 7 scTCR seq (mouse 

OSCC cell line): single cell T-cell receptor sequencing data 
are downloaded from the GEO database, GSE153383. 8 
HNSCC cell gene dependency data (CERES scores for 
CRISPR knockout screens and METER scores for RNAi 
screens) are downloaded from Cancer Dependency Map 
(DepMap, https://​depmap.​org/) Portal database.

Log (TPM + 1) transformation is performed on bulk 
transcriptomic data (RNA sequencing) of all cohorts. 
For transcriptomic data (Gene Expression Array), R 
package "limma" is used to normalize them. For SNV, 
only non-silent mutation is retained. For CNV, GIS-
TIC2.0 is used to identify gene level copy number 
change of recurrent CNVs.

Calculation of individual weight hallmark gene set 
mutation burden
Pathway networks were often integrated into global 
network, which was constantly subject to the inter-
ference of different conditions. The concept of indi-
vidualized treatment suggested that constructing 
sample-specific network was a better approach, how-
ever, the scarcity of such methods and the large vari-
ability in network construction across methods make 
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it hard to capture sample-specific networks accu-
rately and consistently. For this reason, cancer-related 
networks seems a conservative strategy built on the 
concept of population. Specifically, Protein–Protein 
interaction (Gene SYMBOL ID) files downloaded from 
STRING, BIOGRID databases and the parsed KGML 
file of KEGG database were used to build a global pro-
tein–protein interaction network, and reserved the 
pair with absolute Pearson correlation coefficient > 0.4 
and p < 0.05 in a cancer cohort to form Cancer Type-
Specific protein–protein interaction network.50 HGSs 
were downloaded from MSiDgb (https://​www.​gsea-​
msigdb.​org) and mapped to the network built in pre-
vious steps. In each HGS network, the three types of 
node centrality coefficients are defined as:

where Degree, Betweenness Centrality and Eigenvec-
tor Centrality are the three Network Centrality Features. 
For a particular node i in a binary network with n nodes, 
the Degree represents the number of nodes directly con-
nected to it, Betweenness Centrality estimates the frac-
tion of shortest paths that pass through that node, The 
Eigenvector estimates the centrality values of the nodes.

Weight HGS Mutation Burden (WHMB) is defined as:

In which 

where Msize is number of HGS. Individual Weight HGS 
Mutation Burden (IWHMB) is defined as:

IWHMB Zscore WHMB by Sample, IWHMB>0 means 
mutation status of HGS is activated, otherwise it is inac-
tivated or suppressed in a single patient.
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EGFR pathways were downloaded from KEGG 
(https://​www.​genome.​jp/​kegg/), GO (https://​geneo​ntolo​
gy.​org/) and REACTOME (https://​react​ome.​org/), and 
combined with 50 HGS into one file to calculate the 
IWHMB of EGFR pathway.

Jaccard similarity coefficient
Jaccard similarity coefficient is defined as:

Differential expressed genes (DEGs) analysis
For unpaired samples, analysis of DEGs was performed 
using the R package DEseq2. For Paired samples, paired 
t-tests were used, Bonferroni’s test was used as a correc-
tion for p-value. DEGs confirmation thresholds: high dif-
ferential genes: abs(log2FoldChange) > 1 & p.adjust < 0.05, 
medium differential genes: abs(log2FoldChange) > 0.5 & 
p.adjust < 0.05.

Enrichment analysis
For DEGs, we performed KEGG and GO enrichment 
analysis based on the hypergeometric distribution prin-
ciple (implemented by "EnrichGO" and "EnrichKEGG" in 
the R package clusterProfiler) with default values. For the 
List of Gene difference rank (genes arranged in descend-
ing order of difference ploidy), we performed Gene Set 
Enrichment Analysis (GSEA, implemented by "GSEA" 
in the R package clusterProfiler). For a single sample, we 
performed Gene Set Variation Analysis (GSVA, imple-
mented by the "gsva" function in the R package GSVA). 

The gene sets required for GSEA and GSVA analyses 
were downloaded from the MSigDB database, includ-
ing three gene sets h.all.v7.5.1.symbols.gmt, c5.all.
v7.5.1.symbols.gmt, c2.cp. kegg.v7.5.1.symbols.gmt and 
the previously reported immune gene set [30]. Enriched 
pathway Bayesian network inference and visualization is 
implemented by the R package "CBNplot" [31].

CIBERSORT immune cell scores
Scores of 22 immune cell are calculated by CIBERSORT 
through gene exp expression. Tumor Purity and Stromal 
Score are estimated by ESTIMATE.

(7)J (A,B) = |A∩B|
|A|+|B|−|A∩B|

https://www.gsea-msigdb.org
https://www.gsea-msigdb.org
https://www.genome.jp/kegg/
https://geneontology.org/
https://geneontology.org/
https://reactome.org/
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Clustering analysis
Consensus Cluster is implemented by the "Consensus-
ClusterPlus" function in the R package ConsensusClus-
terPlus, with parameters set to maxK = 1000, reps = 50, 
pItem = 0.8, clusterAlg = "km", distance = "euclidean". 
K-means Cluster is implemented by R base kmeans func-
tion. Hierarchical cluster is implemented by R base hclust 
function. Parameters of K-means Cluster and Hierarchi-
cal Cluster are set to default values.

Tumor mutational burden (TMB) calculation
TMB is defined as the total number of somatic gene cod-
ing errors, base substitutions, insertions or deletions 
detected per million bases, The TMB is calculated using 
the R package maftools function "maf".

CNV burden (CNB) calculation
CNB is defined as the sum of absolute value of CNV calcu-
lated by GISTIC2 (gene level, amplification: 1 deletion: -1).

Calculation of stemness based on transcriptomic 
and methylation data
We took a previously published algorithm [32] to calcu-
late the stemness. The approach is as follows: the pre-
dicted model values calculated by previous article are 
obtained [33] (based on transcriptomic and methylation 
data of pluripotent stem cell by one-class logistic regres-
sion (OCLR) algorithm), then spearman correlation 
coefficients between our samples and the model pre-
dictions are used as the stemness (transcriptome and 
methylation).

Community module score
Because the expression changes of each module genes are 
highly correlated, it makes sense to represent each mod-
ule by a single representative expression profile called 
module score. Module score is defined as first principal 
component of Module Matrix.

Mutational signatures analysis
The somatic SNVs of each sample were divided into 
96-trinucleotide context. Non-negative matrix factori-
zation (NMF) algorithm decomposed it into individ-
ual contributions of the reference set of 30 canonical 
mutational signatures available in the Catalogue of 
Somatic Mutations in Cancer (COSMIC database; 
http://​cancer.​sanger.​ac.​uk/​cosmic/​signa​tures).

Statistical analysis
For the statistical methods used in this study, Categori-
cal variable correlation analysis: Fisher’s exact test with 
two-sided alternative hypothesis. Two-sided population 
test; Student’s t-test, and Mann–Whitney U-test with 

two-sided alternative hypothesis. Multiple population 
test: One-way ANOVA. Rich set analysis (here custom 
gene sets):Chi-square Test with upper-tailed alternative 
hypothesis. Relationships between continuous variables 
were inscribed using Spearman and Peason correlation 
coefficients. Survival Differences between subgroups 
were tested using log rank test, and Kaplan–Meier sur-
vival curves were generated. The relationship between 
continuous variables and Overall Survival was tested 
using Multivariate Cox regression analyses. All statistical 
analyses were based on R software (4.0.5).

Results
Developing IWHMB and exploring its relationship 
with clinical phenotype in HNSCC
We improved PMB into IWHMB as shown in Fig.  2A. 
The IWHMB integrated pathway network during count-
ing the number of genomic mutations in the pathway 
(see Materials and Methods) and ranked at the individ-
ual level to eliminate the effect of TMB. This approach 
outputs an IWHMB matrix (Additional file 2: Table S2 
and Additional file  2: Table  S3) with rows represent-
ing 50 Hallmark Gene Sets (HGS), columns represent-
ing patients, and elements representing IWHMB to 
explore the association of multi-omics with clinical 
characteristics.

To explore the relationship between IWHMB and the 
clinical phenotype of HNSCC, we selected HPV status, 
clinical prognosis and sub-anatomical location, which were 
to be associated with HNSCC genomic alterations [2, 34]. 
We found that the IWHMB scores of 11 HGSs were sig-
nificantly associated with HPV status (t-test p < 0.05 in 
HPV positive and negative subgroups), 4 of which (P53_
PATHWAY, WNT_BETA_ CATENIN_SIGNALING, 
DNA_REPAIR and E2F_ TARGETS) were significantly 
highly scored in HPV negative subgroup, and 6 of which 
(IL2_STAT5_SIGNALING, IL6_JAK_STAT3_SIGNAL-
ING, FATTY_ACID_METABOLISM, etc.) significantly 
high in HPV positive subgroup (Fig.  2B). Based on the 
IWHMB of a single HGS, we divided the patients in two 
HNSCC cohorts into high (IWHMB > 0) and low score 
groups (IWHMB <  = 0) to compare the prognostic dif-
ferences. In TCGA HNSCC cohort, the high score of 
IWHMB in the cell cycle HGS (DNA_REPAIR, E2F_TAR-
GETS and MITOTIC_SPINDLE), the malignant stroma 
HGS (MYOGENESIS, HEDGEHOG_SIGNALING, 
NOTCH_SIGNALING and TGF_BETA_SIGNALING), 
and sterol metabolism HGS (ADIPOGENESIS, BILE_
ACID_ METABOLISM and ESTROGEN_ RESPONSE_
LATE) indicated a worse prognosis (log rank:p < 0.2, 
HR > 1) (Fig.  2C). When the TCGA HNSCC cohort 
was divided into HPV positive and negative groups, the 
high IWHMB of TNFA_SIGNALING_VIA_NFKB and 

http://cancer.sanger.ac.uk/cosmic/signatures
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INFLAMMATORY_RESPONSEHGS implicated a worse 
prognosis in HPV positive group (log rank:p < 0.05, HR > 1), 
while the high IWHMB of TGF_BETA_SIGNALING and 
APOPTOSIS suggested a worse prognosis in the HPV 
negative group (log rank:p < 0.05, HR > 1) (Fig.  2D). In 
Chen’s cohort, the high IWHMB of G2M_CHECKPOINT 
and ANGIOGENESIS indicated a worse prognosis (log 
rank:p < 0.3, HR > 1) (Fig.  2E). Additionally, sub-anatom-
ical sites also affected IWHMB scores. In TCGA HNSCC 
cohort, pharyngeal squamous cell carcinoma got the high 
IWHMB in EMT, ANGIOGENESIS and TGF_BETA_
SIGNALING (p < 0.05, the mean difference > 0), and a low 
IWHMB in APOPTOSIS (p < 0.05, mean difference > 0) 
(Fig. 2F). In Chen’s cohort, pharyngeal squamous cell car-
cinoma got a high IWHMB in ANGIOGENESIS, while oral 
squamous cell carcinoma got a high IWHMB in APOP-
TOSIS (p < 0.3 and the mean difference > 0) (Fig.  2G). In 
P53_PATHWAY, WNT_BETA _CATENIN_SIGNAL-
ING, G2M_CHECKPOINT and DNA_REPAIR, tongue 
squamous cell carcinoma had a high IWHMB, while thy-
roid squamous cell carcinoma displayed a low IWHMB 
(p < 0.05).

Furthermore, we disclosed the tight correlation of 
IWHMB with clinical stage, metastatic status, tobacco 
and alcohol consumption in HNSCC patients. The 
metabolism-related HGS (such as BILE_ACID_ METAB-
OLISM, GLYCOLYSIS and REACTIVE_OXYGEN_SPE-
CIES_PATHWAY) and UV_ RESPONSE_UP got the 
high IWHMB in early HNSCC (Stage I/II). BILE_ACID_
METABOLISM had a consistent tendency in the two 
cohorts (Additional file  1: Fig. S1A) (TCGA HNSCC: 
p < 0.1, the mean difference > 0; chen’s cohort: p < 0.3, the 
mean difference > 0). In contrast, malignant stroma HGS 
(such as EMT, ANGIOGENESIS and TGF_BETA_SIGN-
ALING) and cell cycle HGS (such as G2M_CHECKPOINT 
and E2F_TARGETS) gave the high IWHMB in late HNSCC 
(Stage III/IV), in which ANGIOGENESIS and G2M_
CHECKPOINT showed the consistent changes in the 
two cohorts (Additional file 1: Fig. S1B) (TCGA HNSCC: 
p < 0.3, the mean difference > 0; Chen’s cohort: p < 0.4, the 
mean difference > 0). Moreover, 3 stemness-related HGS 
(MTORC1_SIGNALING, HEDGEHOG_ SIGNALING 
and DNA_REPAIR) displayed the high IWHMB in the 
metastasis of TCGA HNSCC cohort (Additional file 1: Fig. 
S1C) (p < 0.3, the mean difference > 0). Sterol metabolism 
HGS (such as ADIPOGENESIS, ESTROGEN_RESPONSE 
_LATE and ADIPOGENESIS) and APOPTOSIS HGS 
present the high IWHMB in tobacco or alcohol consum-
ers (Additional file 1: Fig. S1D, E) (TCGA HNSCC: p < 0.2, 
the mean difference > 0; chen’s cohort: p < 0.2, the mean 
difference > 0).

Eventually, we calculated the IWHMB of EGFR path-
way to explore the correlation between EGFR signal and 

HNSCC clinical phenotype based on the IWHMB scor-
ing system (Additional file  1: Fig. S2A). Although the 
HPV positive HNSCC patients carried less EGFR muta-
tions, the activity of their EGFR pathway were not puta-
tively decreased. Actually, the HPV positive patients in 
TCGA HNSCC cohorts showed the the higher IWHMB 
of 3 EGFR pathways than those of HPV negative patients 
(Additional file  1: Fig. S2B) (p < 0.2, the mean differ-
ence > 0), which implied that EGFR pathway played dif-
ferential roles in HPV positive and negative patients. 
We compared the relationships between EGFR pathway 
from the 3 gene sets and the prognosis in different HPV 
status. In the HPV negative group of TCGA HNSCC 
cohort, the high IWHMB of EGFR pathway from 3 gene 
sets implicated the worse prognosis, especially the sur-
vival period longer than 3 years (log rank:p < 0.2, HR > 1). 
However, in the HPV positive group of TCGA HNSCC 
cohort, the high IWHMB suggested the better prog-
nosis (log rank:p < 0.05, HR > 1). In Chen’s cohort, the 
gene sets of REACTOME SIGNALING BY EGFR and 
EPIDERMAL GROWTH FACTOR RECEPTOR SIGN-
ALING PATHWAY showed the high IWHMB corre-
lated with the worse prognosis (log rank:p < 0.2, HR > 1), 
while the high IWHMB of EGFR tyrosine kinase inhibi-
tor resistance was correlated with the better prognosis 
(Additional file  1: Fig. S2C) (log rank:p = 0.18, HR < 1). 
Meanwhile, we also compared the correlation between 
the IWHMB of 3 EGFR gene sets and clinical stage and 
metastasis. In both HNSCC cohorts, the IWHMB of 
EGFR tyrosine kinase inhibitor resistance was high in late 
stage (TCGA HNSCC: p = 0.01, the mean difference > 0; 
chen’s cohort: p = 0.01, the mean difference > 0). In the 
TCGA HNSCC cohort, REACTOME SIGNALING BY 
EGFR and EPIDERMAL GROWTH FACTOR RECEP-
TOR SIGNALING PATHWAY showed the high IWHMB 
in metastasis group (Additional file 1: Fig. S2D) (TCGA 
HNSCC: p < 0.3, the mean difference > 0).

Exploring the association of IWHMB with HNSCC molecular 
phenotype
Hierarchical Clustering was adopted to explore the cor-
relation between IWHMB and molecular features of 
HNSCC. According to IWHMB clustering, two HNSCC 
cohorts were divided into 12 clusters (each cluster exhib-
ited one or more IWHMB dominant scores). 9 of the 12 
clusters were enriched in the same HGS in two HNSCC 
cohorts (C1: HEDGEHOG_SIGNALING, C2: TGF_
BETA_ SIGNALING, C3: NOTCH_ SIGNALING, C4: 
CELL CYCLE, C5: EMT, C6: IL6_JAK_STAT3_SIGNAL-
ING, C7: INTERFERON RESPONSE, C8: MYC_TAR-
GETS_V2, and C10: ANGIOGENESIS). While the rest 
3 clusters were enriched in the different HGS in two 
HNSCC cohorts (C9: G2M_CHECKPOINT in TCGA 
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cohort and DNA_REPAIR in Chen’s cohort, C11: UV_
RESPONSE_DN in TCGA cohort and REACTIVE_
OXYGEN_SPECIES _PATHWAY in Chen’s cohort, and 
C12: PROTEIN_SECRETION in TCGA cohort and 
UNFOLDED _PROTEIN_RESPONSE in Chen’s cohort) 
(Fig.  3A, B and Additional file  1: Fig. S3A, B). By com-
paring the prognosis of 12 clusters, we found that the 
significant prognostic differences among clusters were 
only detected in Chen’s cohort (Additional file  1: Fig. 
S3C), but not in the TCGA HNSCC cohort (Fig. 3C). By 
extending the comparison to other 32 cancers in TCGA, 
we found that in 15 cancers (ACC, BLCA, CHOL, KICH, 
GBM, LGG, LIHC, LUSC, PCPG, PRAD, STAD, THYM, 
UCEC, UVM and LAML), there were significant prog-
nostic differences among clusters (p < 0.05, Consensus 
Clustering by using the number of clusters with the most 
significant prognostic differences as k-value, Additional 
file  1: Fig. S4), implicating that the molecular classifica-
tion by IWHMB could discriminate the prognostic sub-
types of multiple tumors.

Subsequently, we explored the genomic and transcrip-
tomic features of each cluster. As expected, both cohorts 
showed the significant enrichment of somatic mutations 
in the representative HGS of each cluster (Fig.  3D and 
Additional file  1: Fig. S3D). The noticeable heteroge-
neity of Copy Number Variation (CNV) was disclosed 
among clusters in both TCGA and Chen’s cohorts. In 
TCGA cohort, 3q amp region (SOX2, TP63) was mainly 
enriched in C1, 11q13 (CCND1) in C7, 7p amp region in 
C4 and C1, 3p del in C12, and 9p del in C8 (Fig. 3E). In 
Chen’s cohort, 3q amp region was mainly enriched in C4 
and C12, 7p amp region in C1, 11q amp region in C4, and 
3p del in C4 and C8 (Additional file 1: Fig. S3E). Gener-
ally, the CNV heterogeneity was detected not only among 
the clusters in the same cohort, but also in the same clus-
ter from different cohorts, coinciding to the heterogene-
ity and diversity among clones during cancer evolution. 
In TCGA cohort, the TMB of C7, C11 and C12 were sig-
nificantly lower than that of other clusters (Fig. 3F), while 
C12 had the highest CNV Burden in all clusters (Fig. 3G), 
suggesting the CNV dominance during the tumorogen-
esis of this cluster. In Chen’s cohort, C2 had the lowest 
TMB in all clusters (Additional file 1: Fig. S3F), while the 

CNV Burden of C4, C5 and C6 was significantly higher 
than those of other clusters (Additional file 1: Fig. S3G).

At transcriptomic level, the C1 of both HNSCC cohorts 
exhibited the highest StromalScore scores based on ESTI-
MATE algorithm, and the C7 displayed the highest Immu-
neScore scores (Fig. 3H-J and Additional file 1: Fig. S3H-J). 
By comparing the IWHMB clusters with Kech subtypes 
[35], we found that in both cohorts, C1 had the highest and 
C6 had the lowest MS enrichment, while C12 had the high-
est BA enrichment (Fig. 3K and Additional file 1: Fig. S3K). 
Figure 3L and Additional file 1: Fig. S3L showed the Differ-
entially Expressed Gene (DEGs) (abs(log2FoldChange) > 1 
and FDR < 0.05) by comparing the gene expression profile 
of each cluster with all others. GSEA analysis was per-
formed with the DEGs of each cluster (abs (NES) > 1.5 and 
FDR < 0.1) (Fig.  3M and Additional file  1: Fig. S3M). The 
comparison between the GSEAs from the same clusters of 
two cohorts found that GSEA of C1 was enriched in EMT 
and Extracellular Matrix (ECM) pathways, C3 in intercel-
lular adhesion and communication pathways, C5 in vesicle 
secretion and cell membrane component related pathways, 
C6 in DNA and chromatin structure regulation related 
pathways, and C7 in immune related pathways (Fig. 3N). 
The genomic alterations shared by the same clusters in two 
cohorts suggested that although significantly heterogene-
ous at genomic level, the IWHMB of clusters exhibited 
transcriptomic similarity (Fig. 3O), which was detected not 
only in different clusters within the same cohort, but also 
in the same cluster from different cohorts. Furthermore, 
we calculated the contributions of Mutational Signatures 
in individual sample of TCGA HNSCC cohort with NMF 
algorithm (Additional file  1: Fig. S5A), and annotated 
them with COSMIC database (Additional file 1: Fig. S5B). 
In all clusters, C11 displayed the lowest contributions of 
Mutation Signatures (liver cancer, DNA mismatch repair, 
C > T_CpG), C3 and C4 were the lowest in APOBEC muta-
tion signature, while all clusters showed the largest altera-
tions in Tobacco Mutation Signature (Additional file 1: Fig. 
S5C). Taken together, above findings illustrated that as a 
progressed PMB, IWHMB was correlated with both clini-
cal and molecular features of HNSCC, and suggested that 
the IWHMB-related transcriptomic alterations were key 
to HNSCC phenotype.

(See figure on next page.)
Fig. 3  Multi-omics differences in IWHMB-associated cancer clusters in TCGA cohort. A Circular cluster dendrogram showing 12 IWHMB-associated 
cancer clusters. B Heatmap showing 12 IWHMB-associated cancer clusters. C Clinical prognosis of 12 IWHMB-associated cancer clusters. 
D Somatic mutation waterfall plot of 12 IWHMB-associated cancer clusters. (E) Differential copy number changes (Fisher’s precision 
probability test pvalue < 0.05) in 12 IWHMB-associated cancer clusters. F TMB of 12 IWHMB-associated cancer clusters. G CNV Burden of 12 
IWHMB-associated cancer clusters. H-J StromalScore, TumorPurity and ImmuneScore of 12 IWHMB-associated cancer clusters. K Relationship 
between IWHMB- associated cancer clusters and Kech clusin of 12 IWHMB-associated cancer clusters. L DEGs of 12 IWHMB-associated cancer 
subtypes. M GSEA pathway enrichment of 12 IWHMB-associated cancer subtypes. N GSEA-enriched pathways shared by 6 IWHMB-related cancer 
clusters in two HNSCC cohorts. O Shared genomic features of 9 IWHMB-related cancer clusters in two HNSCC cohorts
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The transcriptomic signatures associated with IWHMB
To search the IWHMB-related transcriptomic features, 
we hypothesized that the changes of gene expression 
were positively correlated with the linear changes of 
IWHMB. In this hypothesis, because IWHMB scoring 
of the 50 representative HGSs represented the mutations 
in upstream pathways, the genes perturbed by the muta-
tions in upstream pathway were regarded as IWHMB-
related genes (IRGs), and their expression changes were 
the transcriptomic signatures associated with IWHMB. 
To find out the IRGs, we constructed regression models 
through support vector machine regression (SVR) with a 
linear kernel function, in which the IWHMBs of 34 HGS 
were used as the independent variables, and the z-score 
transformed from the expression of the 21,939 protein-
coding genes as the dependent variables (Fig.  4A, See 
details in Additional file  3: Method 1). We found that 
the correlation between the most gene expression and 
the predicted value was too weak to support the direct 
effects of upstream pathway mutations on most gene 
expression (Fig. 4B). Therefore, we set correlation coef-
ficients > 0.2 and pvalue < 0.05 as the thresholds and 
obtained 3586 perturbed genes in TCGA cohort. To 
find out the conserved genes in both HNSCC cohorts, 
we further constructed the validating models in Chen’s 
cohort with the correlation coefficient > 0.1 (pvalue 
Lower Quartile: 0.034, Upper Quartile: 0.23). Finally, 
1089 genes were found conserved in both cohorts (Addi-
tional file  2: Table S4). We further excluded the random 
selection of the 1089 genes in Chen’s cohort by generat-
ing a random model in which the mean correlation coef-
ficient between 1089 gene expression and predict value 
(r = 0.0089) was much smaller than that of the validat-
ing model (r = 0.15), and the mean pvalue (p = 0.62) was 
much larger than that of the validating model (p = 0. 13) 
(Fig.  4C). Then, we disclosed the relationship between 
IRGs and HNSCC biology. No matter according to 
CPISPR or RNAi data, IRGs had the significantly lower 
dependency scores compared to the random gene sets 
(Fig. 4D). Paired difference analysis screened 376 signifi-
cantly up-regulated IRGs in TCGA cohort, 143 in Chen’s 
cohort (Fig.  4E), and 134 in both cohorts (Fig.  4F). 
Finally, by using the proteomics data of Chen’s cohort 

for pairwise difference analysis and for the correlation 
with the transcriptomic data, we found that the protein 
levels of most significantly up-regulated genes showed a 
highly positive correlation to the corresponding mRNA 
levels (Fig. 4G). Cox regression on IRG in TCGA cohort 
detected a total of 276 DEGs of IRGs with p < 0.05, all 
of which were associated with unfavorable prognosis 
(HR > 1) (Fig. 4H).

Determinating communities in IRGs network
In order to disclose how IRGs were associated with 
HNSCC biology, we integrated the transcriptional regu-
latory network with the PPI network as described in 
Materials and Methods, and then, mapped IRGs into 
the integrated network to identify the communities con-
structed by IRGs. By performing correlation tests for each 
pair through keeping the pairs with abs(r) > 0.4 and p < 0.05, 
we got a total of 14,387 positive pairs and 249 negative 
pairs, consisting with the fact that the dominant regulation 
in cancer was positive feedbacks [36]. Thus, to reduce the 
noise, only the positive pairs were selected to construct a 
network with 861 nodes and 14,387 edges. Then, through 
ARVGA algorithm (Additional file 1: Fig. S6A, see details 
in Additional file 3: Method 2) in which the loss function 
value and AUC value of the learning process reached sta-
ble (Additional file 1: Fig. S6B), 5 gene collections (hereafter 
referred to as communities) were detected in the network 
(Additional file 1: Fig. S6C, Additional file 2: Table S5). We 
assumed that in the linear model of each gene, the absolute 
value of regression coefficient > 0.15 represented the gene 
expression perturbed by the pathway or biological pro-
cess in HGS (Additional file 2: Table S6). According to this 
assumption, we plotted the number of genes perturbed by 
at least two HGSs (Additional file 1: Fig. S6D), and found 
that most of the IRGs were perturbed by multiple pathways 
or biological processes in HGSs, the top three of which 
were P53_PATHWAY (396), G2M_CHECKPOINT (317) 
and INTERFERON _GAMMA_ RESPONSE (312). These 
findings further confirmed the heterogeneity in genomic 
alterations, and the conservativeness in transcriptomic 
changes. We also found the less overlaps between genes 
perturbed by HGSs and the genes in HGSs (Additional 
file 1: Fig. S6E).

Fig. 4  Identification of IRGs.(A Deconvolution model based on support vector machine regression identifies IRGs. B Speaman correlation 
coefficients between predictors and their expression levels for all protein-coding genes in the TCGA HNSCC cohort. C Further screening obtained 
IRGs that were conserved in two HNSCC cohorts. D The difference of CRISPR- or RNAi-based gene dependency scores between IRGs and random 
Genes. E Differential expressed IRGs in two HNSCC cohorts (tumor vs normal, the most significant IRG is marked). F Venn diagram showing 
the shared differential expressed IRGs genes in two HNSCC cohorts. G Differential expressed Proteins in IRGs (tumor vs. normal, the most significant 
IRG is marked) and their correlation with gene expression in Chen’s cohort. H Hazard rations (Cox regression model) of IRGs in the TCGA cohort 
and their 95% confidence intervals (Top DEGs in all IRGs with significant prognostic relevance were labeled in the proportional hazards model)

(See figure on next page.)



Page 11 of 26Huang et al. BMC Medical Genomics           (2024) 17:49 	

Top FC>1 & FDR<1e-3

Up FC>0.5 & FDR<1e-3

Down FC<-0.5 & FDR<1e-3

Non

Top DEGs Others

0
2

4
6

Cox Pvalue >= 0.05 Cox Pvalue < 0.05 

lo
g

1
0

(p
va

lu
e

)

1
.0

1
.2

1
.4

1
.6

H
R

MMP10
PLOD1

PRAME

CKS1B
CCT5
TMEM97

FAP

MAGEA4

TGM2

LAMC2

SERPINH1

CFL1

LGALS1

CSF2

CDK6

KLF7

CAV1

CKS2

HSP90B1

BAK1

CCDC71L

HSPH1

B4GALNT1

PAICS

FSTL3

LAPTM4B

OCIAD2

MYO1B

LDHA

SEMA3C

ULBP2

CHPF

ANO1

HSP90AA1

ENO1

CCDC86

APP

KPNA2
INHBA

SERPINE1

SQLE
NPM3

ITGA5

PLAU

F2RL1

IWHMB in each patient RNA-seq

Support vector regression

IW
H

M
B

  
 M

a
tr

ix

G11 G1f

Gs1 Gsf

z-scores 

E
e
xp

re
ss

io
n

  
  
 M

a
tr

ix

E11 E1g

Es1 Esg

TPM transform
log2 transform
z-scores

(SVR)

P
a
tie

n
ts

IWHMB

IW
H

M
B

Genes

P
a
tie

n
ts

Genes

Ef G

TCGA HNSCC

Support vector regression
(SVR)

Spearman correlation 
coefficient > 0.2 
3586 genes 

Support vector regression
(SVR)Chen, H et al. 2021

r>0.2

r>0.1

r<0.1

−0.50

−0.25

0.00

0.25

S
pe

ar
m

an
 c

or
re

la
tio

n 
   

   
   

co
ef

fic
ie

nt
   

Spearman correlation 
coefficient > 0.1 
1089 genes 

S
pe

ar
m

an
 c

or
re

la
tio

n 
   

   
   

co
ef

fic
ie

nt
   

0.1

0.2

0.3

Chen, H 
et al. 2021

0

-0.1
random

S
pe

ar
m

an
 c

or
re

la
tio

n 
   

   
   

ad
ju

st
 p

va
lu

e

0.2

0.4

0.6

0
random

0.8

A

B C

Chen, H 
et al. 2021

D

242 134 9

H Prognostic value of IRG in the TCGA HNSCC cohort TOP DEG of IRG in genes significantly associated with prognosis in TCGA HNSCC

TCGA HNSCC Chen, H et al. 2021

Transcriptomics

Mann--Whitney U test
p<0.0001

Random genes

IRG

CRISPR

CERES score

Mann--Whitney U test
p<0.0001

Random genes

IRG

DRIVE

DEMETER score

IWHMB-related Genes

Identification of IWHMB-related Genes by support vector machine regression based deconvolution model

F

DEG

N
or

m
al

G

E

Fig. 4  (See legend on previous page.)



Page 12 of 26Huang et al. BMC Medical Genomics           (2024) 17:49 

Exploring the association of communities with HNSCC 
biology and identifying Community 1 as a core 
transcriptional component affecting HNSCC progression
We further compared the GO and KEGG enrichment 
among different communities, gene function of Com-
munity 1 was mainly enriched in extracellular matrix and 
hard tissue mineralization pathways, Community 2 in 
energy metabolism, Community 3 in ribosome-related 
biological processes, Community 4 in antiviral-related 
responses, and Community 5 in cranio-maxillo-facial 
development (Additional file 1: Fig. S7A), suggesting the 
association of IRGs with multiple HNSCC molecular 
signatures. Subsequently, according to the CRISPR and 
RNAi data of HNSCC cell lines in DepMap database, the 
dependency scores of communities 2 and 3 were the low-
est in all communities (Additional file 1: Fig. S7B), indi-
cating the pivotal role of IRGs in HNSCC genesis.. By 
comparing the coefficient of variation of all 5 communi-
ties in multi-HNSCC cohorts (GEO, TCGA and Chen’s 
cohorts), Community 1, 5, 4, 2 and 3 were lined in the 
high to low order of the coefficient of variation, in which 
the lowest coefficient of variation was higher than non-
IWHMB-related protein-coding genes (Additional file 1: 
Fig. S7C). This finding also revealed that the expression 
of some housekeeping genes, like those in Community 
2 and 3, were not fixed, but varied with the progression 
of HNSCC, endowing them with a potential to be tumor 
hallmarks [37]. Meanwhile, the comparison of network 
similarity between communities revealed the topological 
changes in different HNSCC cohorts, in which Commu-
nity 1 has the highest network stability, while Commu-
nity 2 and 3 lowest (Additional file 1: Fig. S7D).

To find out the community related to HNSCC progres-
sion, we focused on Community 1 which had the highest 
expression variation and network stability. To search the 
mutations in HGSs driving Community 1, we explored 
the Community 1 enrichment in different HGSs accord-
ing to the established correlation between gene expres-
sion and HGS in SVR (Fig. 5A). We found that the most 
significant drive to Community 1 came from Hedgehog 
(HH) signaling, and the genes in Community 1 were 
significantly enriched in the gene set interfered by HH 
signaling. Moreover, in biological network, the first 500 

genes adjacent to Community 1 were also significantly 
enriched in HH signaling (Fig.  5B). All of these results 
correlated HH signaling mutations to the gene expres-
sion of Community 1. Then, we visualized the Commu-
nity 1 network, and annotated the associated HGSs and 
KEGG Pathways (Additional file 1: Fig. S7E, F). Intrigu-
ingly, although the mutations in HH signaling showed 
correlation with HNSCC prognosis at some extent, the 
prognoses predicted by HH signaling mutations showed 
opposite tendency in TCGA and chen’s cohorts (Fig. 5C). 
In contrast, Community 1 has a close and consistent cor-
relation with the clinical features of HNSCC. According 
to the mean values of Module eigenvector of Community 
1 (MEC1), we divided the each of TCGA HNSCC, Chen’s 
and 3 GEO HNSCC cohorts into high and low groups, 
and found that three cohorts (GSE117973, GSE41613 
and TCGA HNSCC) showed the significant survival 
differences between the high and low groups (log rank 
p < 0.05). Although the other two (GSE65858 and Chen’s 
cohort) cohorts failed to reach significant differences, the 
high groups had a remarkable worse prognosis than the 
low groups. Consistently, Cox regression modeling indi-
cated MEC1 as a cancer risk factor (Hazard Ratio > 1) in 
4 of the 5 HNSCC cohorts (Fig.  5D). Furthermore, we 
found that MEC1 were correlated with distant metasta-
sis and clinical stage of HNSCC. In TCGA cohort, MEC1 
were higher in the distant metastases group than those 
without metastases (Fig.  5E). MEC1 were often higher 
in the late-stage (Stage VI/III) group in all 3 HNSCC 
cohorts (Chen’s cohort, GSE41613, TCGA HNSCC) than 
the early-stage group (Stage I/II) (Fig. 5F).

Further exploration displayed that Community 1 was 
also associated with HNSCC molecular phenotype. By 
comparing tumor samples in TCGA HNSCC and Chen’s 
cohorts with the paired normal samples, the Community 
1 displayed the highest proportion in DEGs than other 
communities (Fig. 5G). Further analysis revealed that the 
MEC1 exhibited a highly positive correlation with tumor 
stemness (RNA Stemness in TCGA cohort: r = 0.72 and 
Chen’s cohort: r = 0.72; DNA Stemness in TCGA cohort: 
r = 0.11 and Chen’s cohort: r = 0.19) (Fig. 5H). Among the 
ssGSEA scores representing 13 tumor immune processes, 
the MEC1 had the significantly positive correlation 

(See figure on next page.)
Fig. 5  Communities of IRGs (A) The association of Communities and HGSs. B Right: Relationship between Community 1 and genes disturbed 
by HH pathway. Left: Relationship between Community 1 related genes confirmed by RWR algorithm and HH pathway genes. C Kaplan–Meier 
curves of IWHMB of HH in high and low groups of TCGA HNSCC and chen’s cohorts. D Kaplan–Meier curves and Cox regression models of the MEC1 
in multiple HNSCC cohorts. E Association of Community 1 with distant metastases in the TCGA HNSCC cohort. F Association of Community 1 
with clinical stage in multiple HNSCC cohorts. G The proportion of differential expressed genes contained in the Communities. H Correlation 
between the MEC1 and two kind of tumor stemness scores. I Association of Community 1 with immune scores in multiple HNSCC cohorts. J 
Relationship between Community 1 and the relative content of 22 immune cells in multiple HNSCC cohorts
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(r > 1.5, p < 0.05) with 5 immune signatures (Check Point, 
Type II IFN Reponses, Parainflammation, APC co stimu-
lation and APC co inhibition) and significantly negative 
correlation with 3 immune signatures (T cell co-stimu-
lation, Cytolytic activity and Inflammation-promoting) 
in at least 3 HNSCC cohorts (F  ig.  5I). Among the 22 
immune cells scored by CIBERSORT, MEC1 of Com-
munity 1 exhibited the significantly positive correlation 
(r > 2, p < 0.05) with 3 immune cells (Macrophages M0, 
Macrophages M2 and T cells CD4 memory resting) and 
significantly negative correlation (r < -2, p < 0.05) with 
4 immune cells (T cells CD4 memory activated, T cells 
CD8, Plasma cells and T cells follicular helper) in at least 
3 HNSCC cohorts (Fig. 5J).

In summary, we found that Community 1, pre-
dominantly containing ECM-related genes, was highly 
expressed in HNSCC compared with the adjacent normal 
tissues, and highly correlated with various clinicopatho-
logical and molecular features of HNSCC. Moreover, 
the high variability and network stability of Community 
1 suggested Community 1 as a core transcriptomic com-
ponent connecting PMB with the phenotype of HNSCC 
progression, increasing its potential as a biological 
marker for HNSCC progression.

Single cell omics revealed the dynamic promotion 
of Community 1 to the EMT of HNSCC
To address how Community 1 was closely linked to 
HNSCC progression, we explored the TME in terms of 
single cell omics. A total of 5676 HNSCC TME cells from 
17 qualified samples (HNSCC tissue and paraneoplas-
tic lymph nodes) of the GSE103322 dataset (Additional 
file 1: Fig. S8A, See details in Additional file 3: Method 4) 
were clustered into 8 major cell types, including B cells 
(PECAM1, SLAMF7 and CD79A), classical-CAF (FAP, 
PDPN and COL1A2), Endothelial cells (PECAM1 and 
VWF), TAMM (CD14 and CD163), Malignant Epithe-
lial cells (KRT14 and KRT17), Mast cells (MS4A2 and 
CMA1), Myogenic-CAF (ACTA2 and ACTG2) and T 
cells (CD2 and CD3D) (Additional file 1: Fig. S8B, C). The 
K-means clustering according to the 80 genes in Com-
munity 1 divided the mesenchymal cells (annotated as 
classical-CAF and Myogenic-CAF) and epithelial cells 
(annotated as Endothelial cells and Malignant Epithelial 

cells) in HNSCC TME into 8 clusters (ek1-ek8, EMT-
related Kmean clusters abbreviated as ek), of which ek1 
was characterized by the robust expression of PLAU 
and LGALS1, ek2 by almost blank expression, ek3 by the 
robust expression of DDK3, LAMC2 and MFAP2, the 
expression profiles of ek3 and ek1 were similar but the 
expression intensity of ek3 was greater, ek4 by the robust 
expression of P4HA2 and PDPN. ek5 by the robust 
expression of POSTN, ek6 and ek8 by the robust expres-
sion of major genes of Community 1, ek7 by the robust 
expression of TAGLN (Additional file 1: Fig. S8D).

By constructing pseudo-temporal trajectory with 
monocle2, we found that Malignant Epithelial cells were 
distributed in the early stage, Endothelial cells in the 
middle stage, and CAF in the late stage of the differentia-
tion trajectory (Fig.  6A), implicating the taking place of 
EMT along trajectory. When ek (Fig.  6B) and Commu-
nity 1 module score (calculated by Seurat AddModuleS-
core function) (Fig. 6C) were mapped to the trajectory, it 
was found that Community 1 module score fit well with 
the pseudo-temporal progression, in which the score 
was lowest in the early stage, gradually increasing in the 
middle stage, and highest in the late stage (Fig. 6D), that 
associated EMT with the genes of Community 1. By com-
paring the correlation of GSVA scores between Commu-
nity 1 and HGSs in TME, the Community 1 GSVA score 
were highly positively correlated with the GSVA scores of 
7 HGSs (EMT, ANGIOGENESIS, HYPOXIA, COAGU-
LATION, GLYCOLYSIS, TGF_BETA_SIGNALING and 
UV_RESPONSE _DN) (Fig. 6E), which further suggested 
a comprehensive HNSCC progression enhanced by Com-
munity 1 genes.

Further analysis on cellular characteristics divided the 
pseudo-temporal trajectory into 4 phases. Tanscriptome 
in phase 1 were dominantly involved in small molecule 
metabolism (toxic molecules, glutathione, cytochromes, 
etc.), phase 2 in epithelial differentiation and keratin 
formation, phase 3 in cell adhesion, MHC complex and 
immune regulation, and phase 4 in ECM and hard tis-
sue mineralization (Fig. 6F). The ek2 was concentrated in 
phase 1, ek1, ek3 and ek4 in phase 2, ek5 in phase 3, while 
ek6, ek7 and ek8 in phase 4 (Fig. 6G). In the term of cell 
type, ek1-ek4 were constituted by malignant epithelial 
cells, ek5 by Endothelial cells, ek7 by Myogenic-CAF, ek6 

Fig. 6  Relationship between Community 1 and EMT in TME of HNSCC (A) The trajectory of EMT based on mesenchymal cells and malignant 
epithelial cells. B Distribution of eks along EMT trajectory. C Change of Community 1 module score on EMT trajectory. D The relationship 
between Community 1 module score and pseudotime of EMT trajectory. E Correlation between the GSVA score of Community 1 and 7 HGSs 
in single-cell level. F Gene heatmap of EMT trajectory and pathway enrichment features in four different periods by pseudotime. G, H Association 
of eks with classical cell types and four time periods by pseudotime. I Cell-to-cell communication in eks. J Evolution of genes in Community 1 
associated with pathological grades in EMT trajectories. K Biological characterization of eks. L Unique transcription factor AUC scores for eks

(See figure on next page.)
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and ek8 by Classical-CAF (Fig. 6H). Consistently, by plot-
ting the trends on the pseudo-timeline, we also found 12 
genes in Community 1 associated with HNSCC patho-
logical grading (F ig. 6I). All these findings indicated that 
an increasing expression of the genes in Community 1 
facilitated EMT along trajectory.

Subsequently, CellPhoneDB shows the direct or indi-
rect communications between eks (Fig.  6J). GSVA 
enrichment analysis revealed that ek1-ek4 showed the 
high GSVA scores in pathway involved in immune signal-
ing (e.g., interleukins, immunoglobulins, centrocyte tox-
icity), tyrosine metabolism, epithelial cell development, 
and HNSCC marker genes, whereas the low GSVA scores 
in ECM, NADPH, oxidative phosphorylation, ribosome 
metabolism, protease metabolism, integrins and com-
plement pathways. In contrast, ek5-ek8 exhibited the 
opposite trends. Furthermore, there are subtype-spe-
cific GSVA pathways, such as PIK3-AKT, TGF, and FGF 
enriched in ek1 and ek2, some immune-related pathways 
in ek2, and HEMIDESMOSOME pathways in ek3 and 
ek4, endogenous cellular pathway in ek5, the smooth 
muscle cellular pathway in ek7, and ECM in ek8 (Fig. 6K). 
Similar to the GSVA enrichment analysis, SCENIC analy-
sis revealed that compared to ek5-ek8, ek1, ek3 and ek4 
were rich in TP63, but short of NR2F2, KLF4 and EGR1; 
C2 is rich in MSC, TFAP2C and BCL11A, ek3 in TFAP2A 
and MAF, ek4 in EHF and ZFY, ek5 in FL11 and LMO2, 
ek6 in RUNX2, TWIST2, etc., ek7 in NFIL3, MEF2D, 
etc., as well as ek8 in SHOX2 and SOX11 (Fig.  6L). All 
above results suggested that with HNSCC progression, 
the single cell transcriptomic features exhibited a robust 
EMT phenotype mediated by the genes in Community 1.

Community 1 modified anti‑PD1 responses in OSCC 
immune microenvironment
To investigate the immune cells in TME with GSE153383 
dataset, MOC1(anti-PD1: response) and MOC1esc1 
(anti-PD1: resistant) cell lines were applied to DEG 

analysis (Fig. 7A, See details in Additional file 3: Method 
4, 5). 17 genes in Community 1 (threshold of abs (log-
2FoldChange) > 0.5, FDR < 0.05) were significantly ele-
vated in MOC1, while only 2 genes were significantly 
elevated in MOC1esc1 (Fig.  7B). Compared with the 
non-Community 1 genes, Community 1 contained a sig-
nificantly higher proportion of DEGs (Chi-square test 
p = 2.3e-10) (Fig.  7C). The GSEA analysis also showed 
that Community 1 was significantly enriched (NES = 1.5, 
p = 4.5e-4) in the ranked difference of gene expres-
sion between MOC1 and MOC1esc1 (Fig.  7D). These 
results suggested that Community 1 was closely related 
to OSCC responses to anti-PD1 therapy. Then, this rela-
tion was analyzed at single-cell level. First, 497 Com-
munity 1-related immune genes were identified through 
multiple HNSCC cohorts (See Materials and Methods 
for details. Fig.  7E). 16,885 qualified cells selected from 
the scRNA-seq data of MOC1 and MOC1esc1 were 
annotated into 8 clusters, including B cells (Cd19, Cd79a 
and Cd79b), CD4 T cells (Cd4), CD8 T cells (Cd8a), DC 
(Flt3 and Ccl9), TAMM (M1 like Ccl2, Ccl9; M2 like 
Arg1 and Mrc1), Neutrophils (S100a9 and S100a8), Nk 
(Ncr1 and Nlrb1c) and Treg (Foxp3) (Additional file  1: 
Fig. S9A, B). The cell distribution in the four conditions 
(MOC1, MOC1esc, treatment and control) was shown 
in Additional file 1: Fig. S9C. Because T cells in immune 
TME were too complex and heterogeneous to be cat-
egorized by the traditional markers, we used the Projec-
TILs algorithm to project the annotated T cells (CD8 T, 
CD4 T and Treg) into the referenced single-cell atlases, 
through which T cells were divided into 9 subpopulations 
(CD8_Tex, CD8_Tpex, CD8_EffectorMemory, CD8_Ear-
lyActiv, CD8_NaiveLike, CD4_NaiveLike, Tfh, Th1 and 
Treg) (Fig. 7F). The T cells in MOC1, in which CD8_Tex 
was mainly distributed in MOC1 treatment group, were 
much more than those in MOC1esc1 (Fig. 7G). Because 
of the pivotal role of CD8 T cells in ICI, we used diffu-
sion maps to visualize the dynamic relationship among 

(See figure on next page.)
Fig. 7  Relationship between Community 1 and features of ICI responses TME of OSCC (A) The workflow of the GSE153383 dataset. The MOC cells 
from mouse OSCC line were injected into mice which were subsequently subjected to anti-PD1 therapy. The MOC line produced in responding 
mice was MOC1, and the MOC line in resistant mice was MOC1esc1. B DEG analysis of MOC1 and MOC1esc1. C Distribution of DEG in Community 1 
and non-Community 1. D GSEA analysis on Community 1 in DEG value ranking. E Identification of Community 1-related immune genes in multiple 
HNSCC cohorts. F Umap plots show immune cell subsets identified through the ProjecTILs algorithm in annotated T cells. G Distribution of immune 
cell subtypes in different conditions. H Diffusemap shows the distribution of cells in different immune subsets and conditions in dynamic 
evolution trajectories of CD8 T cells. I Violin plot shows DEGs in CD8 T cells of MOC1 and MOC1esc1. J KEGG analysis of DEGs in CD8 T cells 
of MOC1 and MOC1esc1. K Diffuse map shows dynamic evolution trajectories of MOC1 CD8 T cells. L Changes in TCR clone size before and after ICI 
treatment in the dynamic evolution trajectories of MOC1 CD8 T cells. M, N Violin plot and Line plot show DEGs in MOC1 CD8 T cells before and after 
ICI treatment and their changes in the dynamic evolution trajectories of CD8 T cells. O The identification of iks. P Diffuse map shows the distribution 
of iks in the dynamic evolution trajectories of CD8 T cells. Q Jaccard similarity coefficient between iks and ProjecTILs immune cell subtypes. R 
The hill score of iks. S Identification of cell–cell pairs related to Community 1-related immune genes in CellPhoneDB. T Differential cell–cell pairs 
in Community 1-related immune genes between MOC1(response) and MOC1esc1(resistant)
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CD8 T subpopulations. The 2D diffusion trajectory 
maps divided T cells into branch 1 mainly in MOC1, 
and branch 2 mainly in MOC1esc1. In both branches, 
CD8_NaiveLike and CD8_EarlyActiv were located at the 
beginning, CD8_EffectorMemory and CD8_Tpex in the 
middle, and CD8_Tex at the distal end (Fig. 7H). All these 
findings suggested that the similar changing tendency of 
CD8 T subtypes in different ICI resulted from different 
transcriptomic profiles.

We found the immune exhaustion in the CD8 T cells 
in MOC1, such as the high expression of Ctla4 and 
Tgfb1, and the faint expression of Ifng (F  ig.  7I). The 
enrichment analysis displayed the signatures of both 
immune activation and suppression in MOC1. In con-
trast, the transcriptomic features of MOC1esc tended 
to the slight immune activation (Fig.  7J). Then, we fur-
ther explored the alterations in transcriptome and T-cell 
receptor (TCR) of MOC1 CD8 T cells before and after 
anti-PD1 immunotherapy. We used diffusion map to 
visualize the 2D trajectory of CD8 T cells in the MOC1 
group, in which the control group was mainly located at 
one end of the trajectory, while the treated group was 
diffusely distributed throughout the trajectory (Fig. 7K). 
The scTCR-seq analysis showed that the clone numbers 
of treated group were significantly larger than those of 
control group in the whole trajectory (Fig. 7L). We visu-
alized several differential markers between control and 
treated groups in CD8 T cells in MOC1 (Fig. 7M), as well 
as their changes on the trajectory (Fig. 7N), which sug-
gested that anti-PD1 responses not only enhanced the 
TCR diversity of MOC1 CD8 T cells, but also drove their 
transcriptomic features into a mixture of immune hot 
(Cd8a and Ccl5) and cold (Pdcd1 and Lag3), verifying 
the contradictoriness and complexity in the responses to 
anti-PD1 in TME.

To reveal the relationship between Community 1 and 
anti-PD1 responses in TME, we obtained 87 genes by 
intersecting Community 1-related immune genes into 
the first 1000 genes of CD8 T-cell hypervariable genes. 
Then, the top 30 genes were extracted for kmeans clus-
tering of CD8 T cells to produce 8 clusters (ik1-ik8, 
immune-related Kmeans clusters abbreviated as ik) 
(Fig. 7O) which distributed on the diffuse map (Fig. 7P). 
The Jaccard similarity coefficient of the 8 clusters with 
the subtypes of ProjecTILs was calculated, and found 
that ik4 (Tnfsf11 and Hif1a), ik7 (Cdk6 and Havcr2) and 
ik6 (Itgb1) exhibited the high similarity with CD8_Tpex, 
CD8_Tex (the CD8 T subtype most related to anti-PD1) 
and CD8_EeffectorMemory, respectively (Fig.  7Q), 
suggesting that Community 1 mediated the anti-PD1-
related CD8 T exhaustion transcription signature in 
TME (ik4 and ik6), which was accompanied by the sig-
nificantly reduced TCR diversity (Fig. 7R). Finally, in 497 

Community 1-related immune genes, 249 annotated 
Cell–Cell communication pairs were identified from 
CellPhoneDB database (Fig. 7S), among which the most 
significantly differential expression pairs between anti-
PD1 responsive and resistant subgroups (CCL5-CCR1, 
TGFB1-TGFBR3, CTLA4-CD86, etc.) were selected and 
visualized (Fig.  7T). These results suggested that Com-
munity 1 mediated anti-PD1-related cell communica-
tions in TME.

BHG linked upstream IWHMB with downstream tumor 
progression and immune‑related transcriptomic 
alterations in biological networks
We have thus resolved how IWHMB was associated 
with HNSCC progression phenotype in a data-driven 
model. Then, we integrated global network to elucidate 
the biological association of IWHMB with HNSCC pro-
gression phenotype. Based on the Oncotecture hypoth-
esis [15, 18], we hypothesized two characteristics of 
the specific Tumor Checkpoints: 1) in a specific cancer 
pathway or biological pathway; 2) linking genes to both 
cancer progression phenotype (Community 1) and can-
cer immune phenotype (Community 1-related immune 
genes). We have named MRs with these characteris-
tics after Bridging hub genes (BHGs). The BHGs were 
searched in Community 1 and Community 1-related 
genes, respectively, and also worked as seed nodes in 
global networks (from three PPI: STRING (interac-
tion score > 700), BIOGRID and KEGG; TF-Targert: 
Constructed from GSE103322 dataset using SCENIC). 
Then, node prioritization was performed using RWR 
algorithm (See details in Additional file  3: Method 3) 
to extract the top 500 genes in the descending order of 
their scores. Finally, 249 BHGs were obtained by inter-
secting the two sets of top 500 genes (Additional file 2: 
Table S7). To confirm whether BHGs are present in spe-
cific upstream signaling pathways or biological path-
ways (Driver HGS), we obtained 12 HGSs significantly 
enriched in Community 1 based on the established 
relationship between Gene expression and HGS per-
turbation in SVR. All the 12 HGSs drove Community 
1 expression in a data-dependent manner. 9 of the 12 
HGSs were significantly enriched in BHGs. The 9 HGSs 
have not only data correlation, but also network cor-
relation on the driver of Community 1. Therefore, the 
9 HGSs were considered as Driver HGSs (Fig.  8A). To 
further analyze the BHG features, we visualized the Hub 
Genes (top 50 in Degree ranking) in 249 BHGs, most 
of which had genomic variants (Fig.  8B). Meanwhile, 
since BHG was enriched in cancer driver and progres-
sion-related pathways (Additional file   2: Table S8), we 
constructed and visualized the regulatory network of 
BHGs in the 4 driver pathways (PI3K/AKT Signaling 
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in Cancer, MAPK family signaling cascades, Diseases 
of signal transduction by growth factor receptors and 
Signalings by VEGF) based on gene expression data and 
clinical information (tumor/normal) using CBNplot 
(Fig. 8C).

We examined the association of BHG with prognosis 
and ICI response using TCGA HNSCC cohort and ICI 
cohorts. At the transcriptomic and genomic levels, BHG 
contained a significantly higher proportion of prognos-
tic genes than non-BHG. The forest plot showed the top 
15 genes with significant Cox model pvalues at 3 omics 
levels (Fig.  8D). According to the differential expres-
sion of BHGs between Response (PR, CR) and Resist-
ant (SD, PD) subgroups in ICI cohorts, the BHGs were 
divided into Response BHGs and Resistant BHGs for 
GSEA analysis. The significant enrichment of BHGs in 
the ranked gene difference of the 6 ICI cohorts suggested 
a close association of BHGs with ICI responses (Fig. 8E). 
Above findings indicated that BHGs represent a general 
gene group, most of which were located in the hubs of 
tumor pathway networks. Thus, even the transcriptome 
was regarded as the most direct reflector, the mutations 
in BHGs (including genomic alterations, CNV and epige-
netic changes) would impact the core of tumor networks 
more directly.

BHG outperformed other predictive gene signatures 
via the high stability and robustness in predicting ICI 
responses
To demonstrate the pivotal role of BHG in cancer pro-
gression and immune networks, we tested the predictive 
capacity of BHG on ICI response in 10 independent ICI 
cohorts (Fig. 9A See details in Additional file 3: Method 
6). We tested 5 machine learning methods in Braun et al. 
(2020) cohort, each using 3 omics of the BHG (Gene 
Expression Profile: GEP, Single Nucleotide Variants: 
SNV, Copy Number Variants: CNV) as predictor varia-
bles, it was found that the prediction performance of the 
GEP-based model was significantly higher than those of 
the other two omics, and the prediction performance of 
the logistic regression model with penalty terms was sig-
nificantly higher than those of the other models among 
the different machine learning methods (Fig. 9B). Thus, 
lasso regression was used as a machine learning model 
to test the efficacy of BHG and other public gene signa-
tures in predicting ICI responses. At the somatic muta-
tion level, BHG was compared with 10 public gene 
signatures (Additional file  2: Table  S9) in 5 independ-
ent ICI cohorts, and BHG achieved a mean predictive 
value of 6.5 AUC (5th place). At the gene expression 
level, BHG was compared with 70 public gene signa-
tures (Additional file  2: Table  S10) in 10 independent 
ICI cohorts, and BHG achieved a 7.5 mean AUC (1th 

place) significantly higher than other public gene sig-
natures (Fig. 9C). Additional file 1: Fig. S10A shows the 
predictive capacity of BHG and 10 gene signatures at the 
somatic mutation level in 5 independent ICI cohorts. 
Additional file 1: Fig. S10B shows the predictive power of 
BHG and 70 gene signatures at the gene expression level 
in 10 independent ICI cohorts.

Discussion
In HNSCC, the increasing malignancy and immune 
escape mediated by EMT directly result in poor prog-
nosis and ICI resistance. Within the genome-tran-
scriptome-phenotype framework under the functional 
genomics of cancer, we explored the driving force on 
EMT and immune escape in the perspective of pathway 
mutations, and developed the unique biomarkers to pre-
dict prognosis and ICI response.

IWHMB captures pathway mutational features 
at the individual level and eliminates global TMB 
interference
Hierarchical clustering based on IWHMB divided both 
HNSCC cohorts into 12 clusters, of which the somatic 
mutations were enriched in specific HGS. This result 
indicated that IWHMB not only eliminated TMB inter-
ference, but also captured the individual specific mutated 
pathway signature in large cohorts. On this basis, we 
depicted the atlas of pathway mutations in HNSCC and 
identified 12 pathway mutation-associated subtypes. We 
found that the subtypes enriched for protein secretion-
associated mutations have low TMB and high CNV load, 
suggesting a potential link between the protein secretion 
pathway and CNV. A lot of studies demonstrated the pro-
motion of Hedgehog signaling on tumor stromal compo-
nents [38]. The C1 cluster characterized by HH signaling 
mutations displayed the high stromal score and mesen-
chymal subtype in Kech classification [35]. The C7 clus-
ter with the high immune score enriched the mutations 
related to interferon response, which verified the asso-
ciation of mutation in interferon-related pathway with 
immune activation. Extracellular vesicles (EV) are closely 
associated with ECM, since the ECM-related gene muta-
tions often impact the production and transportation 
of EV [39]. Our study indicated that the transcriptomic 
alterations in the C5 cluster enriching the mutations in 
EMT-related genes showed a robust correlation to EV-
related processes.

IWHMB score correlated the status of pathway mutations 
with HNSCC clinical phenotype
IWHMB could distinguish HPV positive patients from 
negative group because the somatic mutations of TP53 
and CDKN2A almost only present in HPV negative 
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HNSCC patients [40, 41]. Thus, the IWHMB of P53_
PATHWAY and DNA_REPAIR, in whichTP53 and 
CDKN2A acted as key knots, was significantly elevated 
in HPV negative group. IWHMB could also distinguish 
pharyngeal squamous cell carcinoma from HNSCC. 
Clinically, pharyngeal squamous cell carcinoma prone 
to a worse prognosis because of the higher tendency of 
infiltration and metastasis. The IWHMB indicated that 
the somatic mutations of pharyngeal squamous cell 
carcinoma were significantly enriched in the pathways 
related to EMT and metastasis. Moreover, the recent 
study reported that the somatic mutation of CASP8, a 
gene regulating apoptosis, only took place in oral squa-
mous cell carcinoma, but almost not in pharyngeal squa-
mous cell carcinoma [34], which was confirmed by the 
higher IWHMB of APOPTOSIS in oral squamous cell 
carcinoma than that in pharyngeal squamous cell carci-
noma. IWHMB was able to distinguish the clinical stages 
and metastasis of HNSCC, which was applied to predict 
core factors of prognosis, such as the imbalance of cell 
cycle regulation and EMT. In the IWHMB score system, 

the mutations of cell cycle and EMT usually suggested a 
worse prognosis, even the metastasis in late stage. Addi-
tionally, we also found a pathway, sterol metabolism, 
correlated with tobacco and alcohol consumption. The 
mutations in sterol metabolism pathway were correlated 
with HNSCC prognosis, which has been verified by sev-
eral studies [42, 43]. Eventually, according to IWHMB, 
the cancer classification of all 32 kinds of TCGA tumors 
is correlated to prognosis at more or less extent, verifying 
the capability of IWHMB classification in identifying the 
prognostic subtype of tumors.

Transcriptomic alterations will cluster and reveal 
the association of IWHMB with cancer phenotype
Studies using multiple cohorts demonstrate that although 
the somatic mutations vary in different tumor patients, 
their transcriptome share a great similarity [44]. Our 
multiple regression models indicated the changes in indi-
vidual gene expression was often perturbed by the muta-
tions in multiple pathways or biological processes. Such 
perturbation relationship is conserved in both HNSCC 

0.63
0.67
0.62
0.77

0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00

GEP
Mut
CNV
all 0.58

0.68
0.63
0.76

0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00

GEP
Mut
CNV
all

0.52
0.47
0.55
0.61

0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00

GEP
Mut
CNV
all

Specificity

Se
ns

iti
vi

ty

0.52
0.55
0.54
0.62

0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00

GEP
Mut
CNV
all

0.53
0.56
0.57
0.49

0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00

GEP
Mut
CNV
all

Random ForestXgboost

SVMLasso Ridge

BHG
Jiang et al. (2018) TAM
Hou et al. (2022) CIC
Telomere
Jiang et al. (2018) T Cell Exhaustion
Xie et al. (2022) Platelet
Kong et al. (2018) TME
Hypoxia
Auslander et al. (2018) IMPRES
Zhang et al. (2022) Stem.Sig
Glycolysis
McClanahan et al. (2017) T cell inflamed
Ubiquitination
Cellular Senescence
Histone Acetylation
Mitophagy
Jerby−Arnon et al. (2018) RIR
Jiao et al. (2021) MG
ER stress
Angiogenesis
Fatty acid metabolism
STING
ICD
Kong et al. (2022) MIAS
TGF
Ferroptosis
PANoptosis
NAD+
Peng et al. (2022) B cell
EMT
Rooney et al. (2015) CYT
Chemokines
Mitochondrial
Li et al. (2020) IMGS
Ju et al. (2022) Inflammasome
Wu et al. (2022) NetBio
Zeng et al. (2021) TME
Interleukins
m5C
HLA
HRD
Autophagy
Pyroptosis
Cabrita et al. (2020) TLS
He et al. (2022) Coagulation
Wang et al. (2022) Immune escape
Davoli et al. (2017) IS
DDR
Peng et al. (2022) NK cell
Fu et al. (2019) MSI
Necroptosis
McClanahan et al. (2017) expIS
Nurmik et al. (2020)  CAF
m6A
Lactic metabolism
Roh et al. (2017) IS
Liu et al. (2022) Epigenetic
Exosomes
Lysosome
Oxidative stress
m7G
ECM
Zeng et al. (2022) Thrombosis
Kong et al. (2022) Immune Checkpoint 
NETs
Anoikis
Long et al. (2022) MG
McClanahan et al. (2017) IFN
Xue et al. (2022) Neutrophils
Cuproptosis
Lakatos et al. (2020)  CD8T

0.753
0.692
0.682
0.680
0.679
0.675
0.672
0.670
0.669
0.669
0.668
0.663
0.659
0.657
0.655
0.653
0.652
0.648
0.647
0.646
0.645
0.645
0.643
0.643
0.641
0.640
0.639
0.637
0.636
0.635
0.626
0.626
0.625
0.624
0.624
0.623
0.621
0.621
0.619
0.615
0.615
0.614
0.612
0.612
0.609
0.609
0.608
0.608
0.607
0.607
0.606
0.603
0.602
0.601
0.599
0.599
0.596
0.596
0.594
0.594
0.593
0.593
0.587
0.587
0.585
0.584
0.580
0.576
0.572
0.570
0.552

0.096
0.103
0.090
0.100
0.142
0.089
0.132
0.125
0.126
0.161
0.078
0.157
0.126
0.070
0.125
0.126
0.086
0.123
0.077
0.155
0.165
0.058
0.155
0.097
0.077
0.148
0.089
0.096
0.110
0.149
0.122
0.122
0.128
0.123
0.121
0.103
0.117
0.102
0.069
0.119
0.072
0.079
0.090
0.071
0.123
0.074
0.123
0.126
0.118
0.098
0.106
0.146
0.138
0.067
0.085
0.066
0.065
0.065
0.087
0.104
0.073
0.102
0.065
0.077
0.127
0.142
0.088
0.063
0.088
0.071
0.084

0.4 1
log2 HR

Predictive Gene Signatures AUC mean AUC sd

Jiao et al. (2021) GIPS
Patterson et al. (2022) MP
Wang et al. (2018) DDR
Wang et al. (2022) NMP
BHG
Li et al. (2021) 18 genes
Miao et al. (2022) P−TMB
Long et al. (2022) MGB
Gajic et al. (2022) CIRCLE
Pan et al. (2021) 52 genes
Li et al. (2022) PMPscore

0.751
0.657
0.657
0.652
0.649
0.646
0.641
0.616
0.611
0.611
0.603

0.190
0.181
0.181
0.080
0.051
0.068
0.106
0.096
0.098
0.098
0.087

Gene Expressiom

Somatic Mutation

A

B

Test Train

Iteration 1

n Patients

Iteration 2

Iteration 3

Iteration n

LOOCV6 Machine Learning algorithm

Compare with Hot signatures 
Response

Non Response

Immune checkpoint 
inhibitors

Multiple ICI treatment cohorts

C
Random forest SVM

Xgboost Lasso

Ridge

Fig. 9  Comparison of BHG and other predictive gene signatures in multiple ICI cohorts (A) Overview of the BHG-based ICI prediction model. B 
AUC values for predicting ICI responses in the Braun et al. (2020) cohort by combining 6 machine learning models based on 3 omics of BHG. C 
Comparison of AUC means of BHG with 10 and 70 gene signatures in multiple ICI cohorts for predicting ICI response at the somatic mutation 
and gene expression levels, respectively



Page 22 of 26Huang et al. BMC Medical Genomics           (2024) 17:49 

cohorts, suggesting that transcriptomic features were 
more reliable in revealing the association of PMB with 
tumor phenotype.

Complex biological networks consisting of a large num-
ber of nodes and edges are hard to be interpreted holisti-
cally. Therefore, to explore the transcriptomic alterations 
associated with tumor phenotype, we have to dissociate 
the complicated network into communities. The five com-
munities identified by ARVGA algorithm are associated 
with 4 HNSCC phenotype in below aspects: 1). Promoting 
EMT through metabolism and remodeling of extracellu-
lar matrix components; 2). Driving tumor cell growth and 
metabolism by affecting energy metabolism and riboso-
mal processes [37]; 3). Involving in antiviral and genomic 
responses to virus; 4). Contribution to the de-differentia-
tion and stemness of HNSCC cells through gene transcrip-
tion related to craniomaxillofacial development [45].

ECM‑related Community 1 most likely acts as the core 
component affecting HNSCC progression phenotype
As a key non-cellular component in TME, ECM not only 
provides the scaffold for the adhesion and migration of 
tumor cells, but also mediates the interactions between 
tumor cells and TME. In addition, ECM also regulates 
tumor-specific behaviors, such as anti-apoptosis, infi-
nite proliferation, blood vessel invasion, metastasis, etc. 
[46]. This was confirmed in a series of data-driven studies 
recently, in which the Community 1 rich in ECM-related 
genes was robustly associated with clinical prognosis, 
clinical stage, and distant metastatic status in multiple 
HNSCC cohorts. Latest study demonstrated that abnor-
mal extracellular matrix dynamically promotes the con-
version of stem cell niche into a cancerous one [47], which 
is also verified by the positive correlation between Com-
munity 1 and stemness of tumor cells in our study. More 
importantly, ECM plays the regulatory roles in multiple 
stages of tumor immune cycle, for examples, the rigorous 
ECM inhibits apoptosis and release of tumor antigens; 
ECM regulates the activation, migration and elimina-
tion of tumor cells by T cells [48]. Multiple cohorts in our 
study suggested the varying extent of correlation between 
ECM-related Community 1 and immune score. The 
notion in the latest study proposed that tumor rebuilds 
ECM and releases the components into circulating blood, 
which could work as the hallmarks for tumor diagnosis 
or prognosis. Our study improved this notion from the 
perspectives of data and network. ECM-related genes as 
co-expression network modules (Community 1) showed 
strong stability and highly variable transcription in mul-
tiple HNSCC cohorts, which enforces the potential of 
ECM as tumor hallmarks. Taken together, ECM-related 
Community 1 is the key community connecting PMB and 
HNSCC progression phenotype.

Single cell omics reveals the association of Community 1 
with tumor progression and immune
First, we found that the genes in Community 1 promoted 
the EMT of HNSCC. In the pseudotime trajectory of tumor 
EMT, the increasing tendency of the average gene expres-
sion in Community 1 was highly coincided to EMT trajec-
tory. The GSVA scores in the trajectory of Community 1 
were highly positive associated not only with the GSVA 
scores of EMT-related signatures, but also with those of 
tumor progression-related processes. Above findings sug-
gested the intensive promotion by the increasing expression 
of Community 1 on the EMT and progression of HNSCC. 
Furthermore, the distribution of Community1-based clus-
ters on the pseudotime trajectory present how the genes in 
Community 1 participated in EMT. The ek1-ek4 sharing the 
similar expression pattern were distributed in the early stage 
of the trajectory, and their hallmark genes were correlated 
with the early features of tumor EMT (such as cell adhesion: 
GJA1 [49], stemness: DKK3 [50], CD276 [51], and ECM 
regulation: PLAU, PDPN and SERPINE1 [52–54]), which 
suggested the roles of Community 1 in early EMT. TP63, a 
transcription factor related to HNSCC initiation was highly 
enriched in ek1, ek 2 and ek 4. Particularly, ek2 is distin-
guished in transcription regulation and biological function, 
because it enriched FKBP10, a promoter for tumor prolif-
eration and invasion through the crosstalk to PIK3 pathway, 
BCL11A and MSC, the tumor stemness-related transcrip-
tion factors [51, 55]. Since BCL11A also plays a critical role 
in the differentiation of immune cells [56], ek2 enriches the 
immune activation-related pathways. In contrast, ek5-ek8 
encode ECM-related proteins, which are the majority of 
Community 1. Ek7 highly enriches TAGLN (a smooth mus-
cle marker), smooth muscle-related transcription factors 
(LMO2 and KLF2), as well as smooth muscle-related path-
way in Community 1. Ek6 and ek8 encode the main compo-
nents of stromal cells, and highly enrich late EMT features, 
such as the transcription factors (RUNX2 and TWIST2) and 
ECM-related processes. The above results demonstrated 
how genes in Community 1 are involved in and regulate the 
dynamic evolution of HNSCC EMT. Second, the genes in 
Community 1-related immune genes modify the pattern of 
ICI responses in TME of OSCC. By deep mining the single 
cell multi-omics from the mouse models response/resist-
ant to anti-PD1 therapy, the GSEA analysis revealed that 
Community 1 was enriched in the OSCC mice sensitive to 
anti-PD1 therapy, implicating the correlation between Com-
munity 1 and ICI responses in OSCC. ICI responses were 
correlated with the subtypes of CD8 T cells. In the OSCC 
mice receiving anti-PD1 therapy, although the dynamic tra-
jectories of CD8 T cells were similar in different conditions, 
the percentages of subtypes were significantly heterogene-
ous. Most evidently, the ICI sensitive group contained more 
exhaustive CD8 T cells than other groups, suggesting a close 
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correlation of the exhaustive CD8 T cells to ICI responses 
[57]. Community 1 is able to regulate the subtypes of CD8 
T cells related to ICI responses, in particular, the exhaustive 
CD8 T cells. In Community 1-related immune genes, Cdk6 
and Havcr2 are robustly expressed in the exhaustive CD8 T 
cells, playing roles in connecting EMT and tumor immune. 
CDK6 regulates TGFβ1-induced EMT via epigenetic mech-
anism [58] and immune surveillance by decreasing PD-L1 
stability [59]. As the marker of exhaustive CD8 T cells, 
HAVCR2 regulates EMT by crosstalking Akt/GSK-3β/Snail 
signaling pathway [59] with SMAD7/SMAD2/ SNAIL1 
Axis [60], implicating the dual role of Community 1-related 
immune genes in EMT and tumor immune. In addition, 
Community 1 regulates intercellular communication associ-
ated with ICI responses. Some Community 1-related genes, 
such as CTLA4_CD86, which are common immune check-
points with their expression significantly correlated with ICI 
responses; TGFB1-TGFBR3 and TGF pathway, which have 
been strongly associated with immune escape and the activ-
ity as a marker of ICI responses; Chemokine CCL4, which is 
highly expressed in effector memory T cells of ICI-sensitive 
patients.

Network science confirms the pivotal role of BHGs 
in cancer biological networks, which converges upstream 
specific signaling pathway mutation loads and initiates 
downstream transcriptomic alterations affecting cancer 
phenotype
Since based on Tumor Checkpoint, the concept of BHG 
inherits the characteristics of Tumor Checkpoint. The acti-
vation of Tumor Checkpoint originates from the alteration 
of upstream signals. In this study, BHG was significantly 
enriched in the upstream 9 Driver HGS that were highly 
correlated with Community 1 expression, which corre-
sponds to the activation of BHG by IWHMB in 9 Driver 
HGS. Secondly, Tumor Checkpoint regulated downstream 
transcriptomic alterations are closely related to cancer phe-
notype. The BHGs were identified based on cancer progres-
sion and immune phenotype-related genes using random 
walk restart algorithm, so they are not only adjacent to can-
cer phenotype-related nodes in the biological network, but 
also in the hub position, which indicates that the alteration 
of BHGs could perturb the whole cancer biological network. 
BHG not only has the characteristics of Tumor Checkpoint, 
but also breaks some limitations of Tumor Checkpoint. 
Firstly, Tumor Checkpoint overemphasizes the influence of 
transcriptional regulatory networks and thus, is limited to 
transcriptomic factors [61, 62]. BHG extends the concept 
of Tumor Checkpoint to the whole biological network, so 
the genes constituting BHG are not restricted to transcrip-
tional factors only, but include a variety of oncogenes and 
TSG. Secondly, since the identification of MR started from 
upstream genomic alterations, it was difficult to explore the 

relationship between MR and cancer transcriptomic altera-
tions though the strategy clarifying the relationship between 
upstream mutations and MR. Instead, we first identified the 
transcriptomic features closely related to HNSCC pheno-
type and then, identified the BHG. In this way, the relation-
ship between BHG and HNSCC transcriptome would be 
explicated. To demonstrate this close relationship, we used 
prediction of ICI response as a validation index. The predic-
tive ability to ICI response not only represents the robust-
ness of biomarker, but also reflects its capability of capturing 
the transcriptomic alterations of Transcriptomic changes 
associated with resistance or response to ICI treatment. The 
reason BHG can predict ICI response mainly comes from 
two aspects: 1. By activating the IFN γ-JAK-STAT pathway 
to create a hot tumor microenvironment to recruit T cells 
[63, 64]. 2. Through the expression of genes in Oncogenic 
pathways such as TP53, EGFR, CTNNB1, etc., to maintain 
Oncogenic signaling, thereby forming a tumor immune-
suppressive microenvironment to promote immune escape 
[40, 65]. Other gene signatures, such as T cell inflamed, 
Chemokines, Interleukins, etc. only represent a part of 
tumor hot transcriptional signatures; DDR and STING are 
only parts of tumor hot immunity related pathways; while 
CAF, TAM and Immune escape signatures only reflect the 
escape phase of tumor immunity. In conclusion, these gene 
signatures only partially portray tumor immunity, instead of 
globally delineating the hot transcriptional features at tumor 
immune network, so the robustness of prediction models 
based on them is obviously inferior to that of BHG.

Conclusions
PMB algorithm was improved by integrating pathway 
structure information and eliminating the interference 
of global TMB to better respond to the patient’s pathway 
mutation status. Multiple algorithmic models were then 
used to reveal the drive of pathway mutations on EMT and 
immune escape in HNSCC. Finally, the unique biomarkers 
for predicting prognosis and ICI response were identified.
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Additional file 1: Fig. S1. The relationship between IWHMB and clinical 
stage, metastasis, smoking, and drinking in the TCGA HNSCC and Chen, H 
et al. 2021 cohort. (A) HGS with high IWHMB scores in early-stage clinical 
patients. (B) HGS with high IWHMB scores in late-stage clinical patients. 
(C) HGS with high IWHMB scores in patients with metastasis. (D) HGS 
with high IWHMB scores in tobacco-using patients. (E) HGS with high 
IWHMB scores in patients who consume alcohol. Fig. S2. The relationship 
between the IWHMB for three types of EGFR signaling and prognosis, 
clinical stage, and metastasis in the TCGA HNSCC and Chen, H et al. 2021 
cohort. (A) Venn diagram of gene relationships in the three EGFR path-
ways. (B) IWHMB scoring of the three types of EGFR signaling in different 
HPV statuses. (C) The relationship between the IWHMB for three EGFR 
pathways and prognosis in the TCGA HNSCC Negative HPV, Positive HPV, 
and the Chen cohort. (D) The relationship between the IWHMB for the 
three EGFR pathways and clinical staging in the TCGA HNSCC and Chen 
cohorts, as well as the metastatic status in the TCGA HNSCC cohort. Fig. 
S3. Multiomics differences in IWHMB-associated cancer subtypes in Chen, 
H et al. 2021 cohort. (A) Circular cluster dendrogram showing 12 IWHMB-
associated cancer subtypes. (B) Heatmap showing 12 IWHMB-associated 
cancer subtypes. (C) Clinical prognosis of 12 IWHMB-associated cancer 
sub-types. (D) Somatic mutation waterfall plot of 12 IWHMB-associated 
cancer subtypes. (E) Differential copy number changes (Fisher’s precision 
probability test pvalue <0.05) in 12 IWHMB-associated cancer subtypes. 
(F) TMB of 12 IWHMB-associated cancer subtypes. (G) CNV Burden of 12 
IWHMB-associated cancer subtypes. (H-J) StromalScore, TumorPurity and 
ImmuneScore of 12 IWHMB-associated cancer subtypes. (K) Relationship 
between IWHMB-associated cancer subtypes and Kech subtypes. (L) DEGs 
of 12 IWHMB-associated cancer subtypes. (M) GSEA pathway enrichment 
of 12 IWHMB-associated cancer subtypes. Fig. S4. Relationship between 
IWHMB-related subtypes and clinical prognosis in 32 TCGA cancers. Fig. 
S5. Mutation Signatures in TCGA HNSCC cohort. (A) NMF of mutation 
signatures in the TCGA HNSCC cohort. (B) Cosine similarity of mutation 
signatures in the TCGA HNSCC cohort with annotated signatures recorded 
in the COSMIC database. (C) Association of 6 mutational signatures with 
IWHMB-related subtypes in the TCGA HNSCC cohort. Fig. S6. ARGVA 
algorithm is used to identify Communities of IRG. (A) Schematic diagram 
of ARVGA algorithm. (B) Iteration period and loss function of ARVGA 
algorithm. (C) Communities visualization. (D) Interaction plot of 50 HGS 
disturbed genes. (E) Interaction plot of 50 HGS disturbed genes with the 
HGS itself. Fig. S7. Network properties of Communities. (A) GO and KEGG 
enrichment analysis of Communities. (B) The CRISPR-based or RNAi-based 
gene dependency scores between Communities. (C) Average variability 
of Communities gene expression across multiple HNSCC cohorts. (D) 
Network similarity of Communities in multiple HNSCC cohorts. (E) Com-
munity 1 network visualization. Different colors represent that gene is 
interfered by different IWHMB of HGS. (F) Enriched path visualization in 
Community 1. Fig. S8. Single cell annotation of GSE103322. (A, B) UMAP 
plot of GSE103322 single cells, colors represent tissue origin and cell type 
respectively. (C) Expression of marker genes in different cell types. (D) 
Kmean clustering of malignant epithelial, fibroblastic, and endothelial cells 
in GSE103322 using gene expression in community 1. Fig. S9. Single cell 
annotation of GSE153383. (A) UMAP plot of GSE153383 single cells, colors 
represent cell type. (B) Expression of marker genes in different cell types. 
(C) Distribution of GSE153383 cells on UMAP plots under different condi-
tions. Fig. S10. Comparison of AUC values of BHG with other public gene 
signatures. (A) Comparison of AUC values of BHG with 10 gene signatures 
at the somatic mutation level for predicting ICI response in 5 ICI cohorts. 
(B) Comparison of AUC values of BHG with 70 gene signatures at the gene 
expression level for predicting ICI response in 10 ICI cohorts.

Additional file 2: Table S1. Clinical characteristics of the HNSC patients 
used in this study.

Additional file 3: Supplementary methods.
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