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Meta‑analysis of integrated ChIP‑seq 
and transcriptome data revealed genomic 
regions affected by estrogen receptor alpha 
in breast cancer
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Abstract 

Background  The largest group of patients with breast cancer are estrogen receptor-positive (ER+) type. The estrogen 
receptor acts as a transcription factor and triggers cell proliferation and differentiation. Hence, investigating ER-DNA 
interaction genomic regions can help identify genes directly regulated by ER and understand the mechanism of ER 
action in cancer progression.

Methods  In the present study, we employed a workflow to do a meta-analysis of ChIP-seq data of ER+ cell lines 
stimulated with 10 nM and 100 nM of E2. All publicly available data sets were re-analyzed with the same platform. 
Then, the known and unknown batch effects were removed. Finally, the meta-analysis was performed to obtain meta-
differentially bound sites in estrogen-treated MCF7 cell lines compared to vehicles (as control). Also, the meta-analysis 
results were compared with the results of T47D cell lines for more precision. Enrichment analyses were also employed 
to find the functional importance of common meta-differentially bound sites and associated genes among both cell 
lines.

Results  Remarkably, POU5F1B, ZNF662, ZNF442, KIN, ZNF410, and SGSM2 transcription factors were recognized 
in the meta-analysis but not in individual studies. Enrichment of the meta-differentially bound sites resulted 
in the candidacy of pathways not previously reported in breast cancer. PCGF2, HNF1B, and ZBED6 transcription factors 
were also predicted through the enrichment analysis of associated genes. In addition, comparing the meta-analysis 
results of both ChIP-seq and RNA-seq data showed that many transcription factors affected by ER were up-regulated.

Conclusion  The meta-analysis of ChIP-seq data of estrogen-treated MCF7 cell line leads to the identification of new 
binding sites of ER that have not been previously reported. Also, enrichment of the meta-differentially bound sites 
and their associated genes revealed new terms and pathways involved in the development of breast cancer which 
should be examined in future in vitro and in vivo studies.
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Introduction
Breast cancer (BC) is the world’s most widespread cancer 
among women [1]. The majority of BC patients are estro-
gen receptor-positive (ER+), i.e., Cancer cells have estro-
gen receptors (ESR1) [2, 3]. When the ER interacts with 
estrogen, it acts as a transcription factor (TF) and triggers 
cell proliferation and differentiation [4]. Hence, finding 
ER-DNA interaction genomic regions can help identify 
genes that are regulated by ER. Specifically, investigating 
these genomic regions can help to understand ER modes 
of action in cancer progression.

Chromatin immunoprecipitation sequencing (ChIP-
seq), as a next-generation sequencing technique, is 
applied to find the transcription factor binding sites 
(TFBSs) [5]. In the present era, several ChIP-seq data-
sets have been generated to find differentially bound 
sites (DBSs) in BC patients [6–8]. Each study has results 
unique or commonalities with other related studies, 
which could be due to known and unknown batch effects 
[6–8]. On the other hand, gathering relevant studies and 
performing meta-analysis supplies more exact results [9]. 
Few studies have been performed on the meta-analysis of 
ChIP-seq data. A meta-analysis study was conducted by 
Kolmykov and colleagues on ChIP-seq datasets through 
the rank aggregation approach, and the significant TFBSs 
in BC were identified [10]. Some complexities with ChIP-
seq data should be considered for meta-analysis, includ-
ing: (1) it is necessary to consider the same cell line, dose, 
and treatment period (known batch effects), (2) select-
ing the appropriate treatment period, i.e., after which 
treatment period, treated and untreated samples show 
the most differentiation, (3) removing the effects of dif-
ferences laboratory conditions (unknown batch effects) 
seems to be vitally important to obtain more precise 
meta-analysis results, (4) since each study may have been 
analyzed with different platforms and genomic refer-
ences, it is necessary to re-analyze the samples with the 
same tools and references, and (5) it is noteworthy that 
even if the same platform is applied, a different number 
of peaks and regions are obtained for each sample. There-
fore after combining the datasets, they must be prepared 
to obtain the same number, regions, and scores of TFBSs 
for all samples. Next, the unknown batch effects must be 
removed before meta-analysis. Despite the necessities 
mentioned above, no meta-analysis study has already 
been performed on integrated TFBSs to obtain signifi-
cant binding sites in BC.

In the current study, to obtain meta-differentially 
bound sites in estrogen receptor-positive breast cancer 
cell lines, we employed an innovative workflow for the 
meta-analysis of ChIP-seq data. Given the ER’s essen-
tial role in BC, MCF7 and T47D cell lines stimulated 
with E2 were collected to find genomic regions directly 

interacting with ER. MCF7 and T47D cell lines, repre-
senting luminal A subtype, are extensively utilized as 
experimental models in breast cancer research, particu-
larly for the study of hormone-dependent BC. These two 
ER + BC cell lines serve as valuable tools in understand-
ing the molecular mechanisms and exploring potential 
therapeutic interventions for BC, particularly luminal A 
subtype. In the MCF7 cell line, concerning the same cell 
line, dose, and treatment period (removing known batch 
effects), public ChIP-seq datasets were selected and re-
analyzed. Next, samples were integrated, and the same 
number, regions, and scores of TFBSs were obtained in 
doses of 10 nM and 100 nM separately. Finally, unknown 
batch effects were removed, and several ChIP-seq data-
sets were meta-analyzed based on TFBSs scores. Hence, 
we take advantage of the term meta-differentially bound 
sites (meta-DBSs) for the first time. For more precision, 
the meta-analysis results were compared with the results 
of T47D cell lines, and the intersection of both cell lines 
was obtained. By enriching the shared meta-DBSs and 
their associated genes, TFs and pathways that had not 
been previously reported in BC were identified. Moreo-
ver, the results of the ChIP-seq data meta-analysis were 
confirmed by comparing the results of the RNA-seq data 
meta-analysis.

Materials and methods
After collecting data from SRA-NCBI [11] and ENA-
EBI [12] databases, nine MCF7 and T47D cell line-asso-
ciated ER alpha-ChIP-seq datasets from eight studies 
were selected. Differential analysis for each dataset was 
performed, and DBSs were obtained following data pre-
processing and mapping. Next, the meta-analysis was 
performed, and meta-DBSs were identified in the MCF7 
cell line treated with 10  nM and 100  nM E2 separately. 
Then, Peak Annotation was applied for DBSs and meta-
DBSs, and the results of both cell lines were compared. 
Peak set functional enrichment analysis (PSFEA) and 
ChIP enrichment analysis (ChEA) were implemented 
for the common meta-DBSs and their associated genes, 
respectively. Also, the meta-analysis results of both 
ChIP-seq and RNA-seq data were compared. The general 
steps of the present study are summarized in Fig. 1.

Data collection
A comprehensive search was conducted on SRA-NCBI 
[11] and ENA-EBI [12] databases to find ChIP-seq data-
sets in BC (Fig. 2). Some criteria were considered in the 
selection of the ChIP-seq datasets: (1) association with 
ER+ cell lines; MCF7 and T47D cell lines, (2) availabil-
ity of both treated with vehicles (as controls) and treated 
with E2 samples, (3) datasets without any knocked out 
genes, and (4) datasets with the same and appropriate 
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dose and period of treatment. Consequently, GSE94023, 
GSE99626, GSE67295, GSE115607, GSE80367, 
GSE23893, GSE54855, and GSE59530, including MCF7 
and T47D cell lines stimulated with 10 nM and 100 nM 
E2 for 40 or 45 min were selected. The details of the data-
sets are described in Table 1.

Pre‑processing and data analysis
The selected ChIP-seq datasets were re-analyzed under 
the Galaxy platform (https://​galax​yproj​ect.​org) [13] to 
homogenize studies. The data quality control and trim-
ming were performed using FastQC (version 0.11.5) [14] 
and Trimmomatic (version 0.38) [15], respectively. The 
human reference genome (hg38) was utilized for data 
mapping by HISAT2 (version 2.1.0) [16].

Analysis of individual datasets to identify DBSs
Within each individual study, DBSs were identified in 
MCF7 and T47D cell lines treated with E2 compared 
to treated with vehicle (as control) through MACS2 
[22] (version 2.1.1.20160309.6) (-log10 (q−value) > 2; fold-
enrichment > 2). Then, the ChIPseeker (version 1.26.2) 
[23] package was applied for peak annotation. The iden-
tified DBSs associated genes of individual studies were 
further utilized to compare with the results of the ChIP-
seq meta-analysis. During peak calling with MACS2, the 

input samples were also considered to reduce noise. The 
Blacklist regions were also considered to improve the 
signal-to-noise ratio. The maximum tags were set to keep 
one tag at the same location (–keep-dup = 1). In the indi-
vidual dataset analysis, replicates were combined using 
the rmspc (Multiple Sample Peak Calling) package [24].

Typically, analysis of treatment, vehicle, and input 
samples on ChIP-seq data is performed in the following 
steps:

A. ER-ChIP treated with E2 vs. input = corrected ER-
ChIP treated with E2.
B. Vehicle vs. input (for vehicle) = corrected vehicle.
C. Corrected ER-ChIP treated with E2 vs. corrected 
Vehicle = detection of enriched regions in ER-ChIP 
treatment E2 (using MACS2).

Meta‑analysis to identify meta‑DBSs
To find meta-DBSs, a meta-analysis workflow was uti-
lized to compare cells of treated with vehicle versus 
treated with E2 at the TFBSs score levels (Fig.  3). First, 
the same number, regions, and scores of TFBSs were 
obtained utilizing the DiffBind package (Version 3.0.15) 
[25]. All replicates were considered as independent 
samples to produce the binding affinity matrix. Then, 

Fig. 1  An overview of the meta-analysis steps performed in the present study. ChIP-seq datasets were retrieved from SRA-NCBI and ENA-EBI 
databases. Pre-processing and re-analyzing steps of datasets were conducted. Then, batch effects removal and meta-analysis were performed. 
Subsequently, peak set functional enrichment analysis (PSFEA) and ChIP Enrichment Analysis for meta-DBSs-associated common genes were 
performed using the Cistrome-GO database and ChEA3 database, respectively. The packages and methods employed are in bold form. TFBSs 
Transcription factor binding sites, DBSs Differentially bound sites, Meta-DBSs Meta-differentially bound sites

https://galaxyproject.org
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the ARSyNseq (ASCA Removal of Systematic Noise 
for sequencing data) method [26], implemented in the 
NOIseq package [26], was applied to remove unknown 
batch effects (Fig. 1). In ARSyNseq, the TMM (Trimmed 
Mean of M values) method [27] was utilized for between-
sample normalization on TFBSs scores. Then, the 
metaSeq package [28] was employed on all samples to 
find meta-DBSs and set the statistical threshold as -log10 
(q−value) > 2 to select meta-DBSs. Finally, the ChIPseeker 
package was utilized for peak annotation. All packages 
were implemented in R software. The parameters in the 
ARSyNseq and the metaSeq packages were set as follows:

mydata2corr1= ARSyNseq (mydata2, factor = “batch”, 
batch = TRUE, norm = “tmm”)  result<- meta.oneside.
noiseq (cds, k=0.5, norm = “n”, replicates = “biological”, 
factor = flag1, conditions = c(1,0), studies = flag2)

Peak set functional enrichment analysis and ChIP 
enrichment analysis
Gene ontology (GO) and pathway enrichment analy-
ses were performed with Cistrome-GO (the updated 
version of 2019) (http://​go.​cistr​ome.​org/) [29] to 

determine the functional importance of the identified 
meta-DBSs. For such analysis, we employed peak set 
functional enrichment analysis (PSFEA) term for the 
first time. The GO annotation was performed at three 
levels, including biological process (BP),  molecular 
function  (MF), and  cellular component (CC). Further-
more, the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (the updated version of 2019) [30] enriched 
pathways were determined. The adjusted P-value ≤ 0.05 
was applied to select significant GO terms and KEGG 
pathways. Also, a comprehensive ChIP Enrichment 
Analysis (ChEA) was performed on meta-DBSs-associ-
ated common genes using ChEA3 (the updated version 
of 2019) (https://​amp.​pharm.​mssm.​edu/​ChEA3) [31], 
which contains six libraries, including Literature, Enri-
chr, ARCHS4—Coexpression, ENCODE, ReMap, and 
GTEx—Coexpression. Also, two overall results were 
obtained: (1) integrated_topRank, and (2) integrated_
meanRank; in both of them TFs were ranked based on 
estimated scores in libraries. Adjusted P-value ≤ 0.05 
was considered significant.

Fig. 2  The flowchart to select datasets. A total of 351 datasets from SRA-NCBI and ENA-EBI were evaluated. Finally, based on the four criteria 
described, eight studies on MCF7 and T47D cell lines treated with E2 were used in the present study

http://go.cistrome.org/
https://amp.pharm.mssm.edu/ChEA3
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Results
The meta-analysis was performed on the ChIP-seq 
data based on TFBSs scores to identify meta-DBSs. 
Here, known batch effects were first removed. Since the 
treatment period with E2 can affect the results, several 
treatment periods were investigated to select the appro-
priately treated cell lines. In the GSE94023 study, there 
were various periods of treatment with E2, including 
0 (mock treated as control) and 5, 10, 20, 40, 80, 160, 
320, 640, and 1280  min (cases). An appropriate sam-
pling time reveals the maximum distinction between 
treated and untreated samples. Hence, a heat map cor-
relation matrix was drawn for all samples. According to 
the matrix, the samples after 40 min showed the most 
significant difference compared to the control (see 
Additional file 1: Figure S1). Thus, samples treated with 

10 nM and 100 nM E2 for 40 or 45 min were selected. 
The minimum peak length was considered equal to 
150-bp as the significant peak cutoff.

Identification of DBSs
After selecting and pre-processing data, DBSs were 
obtained from nine individual ChIP-seq datasets 
(Table  2; see Additional file  2: Tables S1-S9) and com-
pared with the meta-analysis results.

Identification of meta‑DBSs
To identify meta-DBSs in MCF7 cell lines, datasets were 
integrated based on stimulation with 10 nM or 100 nM 
E2 separately. Next, DiffBind was applied to obtain the 
same number, regions, and scores of TFBSs (see Addi-
tional file  2: Tables S10 and S11). Following unknown 
batch effect removal (see Additional file 1: Figures S2-S5), 

Table 1  Characteristics of the selected ER-ChIP-seq datasets and their experimental design

nM Nanomolar, ETOH ethanol

Accession 
number

Cell lines Dose 
(nM) of 
E2

Inputs Samples 
treated with 
vehicles as 
controls

Samples 
treated with E2

chip antibody Type of 
vehicle 
treatment

Experiment

GSE94023 MCF7 10 - GSM2467220 GSM2467224 F3A6 (to ERal-
pha, Grone-
meyer)

mock Dzida,…et al. [7]

GSE99626 GSM2125164 
(Vehicle_Input) 
GSM2125165 
(E2_Input)

GSM2648921 GSM2648922 anti-ER (SC 
biotech HC-20, 
cat# SC-543, lot# 
L1911)

ETOH Singhal,…et al. 
[17]

GSE67295 - GSM1643946 
(rep1)
GSM1643947 
(rep2)

GSM1643948 
(rep1)
GSM1643949 
(rep2)

ERa (Vendor: 
Santa Cruz, cat# 
sc-543, lot# 
C2114)

DMSO Stender,…et al. [8]

GSE115607 GSM3184881 GSM3184871 GSM3184880 ERa (Santa 
Cruz, sc-543, lot 
F1716)

DMSO Puyang,…et al. [6]

GSE80367 T47D GSM2112811 
(Vehicle_Input) 
GSM2112812 
(E2_Input)

GSM2112796 GSM2112798 anti-ER (SC bio-
tech HC-20)

ETOH Singhal,…et al. 
[18]

GSE23893 T47D 100 GSM589247 GSM589238 GSM589239 ERα (sc-543, 
Santa-Cruz)

ETOH Kong,…et al. [19]

GSE23893 MCF7 GSM589244 GSM589236 GSM589237 ERα (sc-543, 
Santa-Cruz)

ETOH Kong,…et al. [19]

GSE54855 GSM1325252 GSM1325246 GSM1325250 ER (Santa Cruz, 
sc-542)

mock Guertin,…et al. 
[20]

GSE59530 GSM1534712 
(Vehicle_
Input_rep1) 
GSM1534713 
(Vehicle_
Input_rep2) 
GSM1534714 
(E2_Input_rep1) 
GSM1534715 
(E2_Input_rep2)

GSM1534720 
(rep1) 
GSM1534721 
(rep2)

GSM1534722 
(rep1) 
GSM1534723 
(rep2)

ER alpha (rab-
bit polyclonal 
generated 
in the Kraus Lab)

unknown Franco,…et al. 
[21]
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Fig. 3  A workflow for integration and meta-analysis of ChIP-seq TFBSs scores from several studies. Datasets were selected based on the same 
criteria and re-analyzed with the same platform. Then samples were integrated, normalized, and meta-analyzed. This process was performed 
for MCF7 cell lines, and meta-DBSs were obtained. Next, meta-DBSs-associated genes were identified with peak annotation. The packages used 
in each step are marked in blue. TFBSs Transcription factor binding sites, DBSs Differentially bound sites, Meta-DBSs Meta-differentially bound sites
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ChIP-seq data were meta-analyzed, and the meta-DBSs 
(-log10 (q−value) > 2) were identified (see Additional file  2: 
Tables S12 and S13). The details of DBSs, meta-DBSs, 
and associated genes are described in Table 2.

Shared significant TFBSs between meta‑DBSs and DBSs
Meta-DBSs were compared with DBSs obtained from 
individual datasets for more precision. Based on our find-
ings, 617 genes were common among meta-DBSs- and 
DBSs- associated genes, 35 of which were TFs (Fig.  4). 
Remarkably, nine of those TFs were also identified among 
the top 50 TFs obtained from ChEA3 in Section  3.5.1 
(Fig. 6). There were 282 genes associated with peaks iden-
tified through meta-analysis of MCF7 cell lines treated 
with 10 nM E2 but not in initial individual datasets. Six of 
them were POU5F1B, ZNF662, ZNF442, KIN, ZNF410, 
and SGSM2 TFs (Fig.  4A). Moreover, most of the top 
50 TFs were also identified among the meta-analysis 
results and some initial individual datasets (Figs.  4 and 
6). PCGF2, HNF1B, and ZBED6 TFs predicted by ChEA3 
were not identified through meta-analysis or initial indi-
vidual datasets.

Genomic occupancy of ER binding sites
The genomic locations of 7,308 ER-meta-DBSs cor-
related with 617 common genes were annotated using 
the ChIPseeker. According to the genome-wide annota-
tion of TFBSs, it was found that there were 1,534 bind-
ing sites located within 10 kb of a transcription start site 

(TSS) (Fig. 5A). 1,531 of these sites were situated in the 
proximal to the TSSs (promoter region). Also, peaks were 
3,327 in introns, 2,104 in intergenic, 218 in exons, 13 in 5’ 
untranslated regions (UTRs), three in TSSs (downstream 
region), and 112 in 3’ UTRs (Fig.  5B and C). Because 
some of the annotations overlap, the complete annota-
tions and their overlaps are illustrated in Fig. 5D. These 
results indicated that most ER binding sites are located in 
introns, followed by intergenic regions, promoter-TSSs, 
and exons to a lesser degree in 3’ UTRs, TSSs, and 5’ 
UTRs.

Enrichment analysis
ChIP enrichment analysis
The 617 meta-DBSs-associated common genes were 
enriched using the ChEA3 database to predict signifi-
cant TFs that regulate gene expression in breast cancer. 
The results of six libraries and two overall results are pre-
sented in Additional file 2: Tables S14-S21. In accordance 
with the integrated_meanRank (see Additional file  2: 
Table S21), 1632 TFs were ranked, and the top 50 TFs are 
shown in Fig.  6. Remarkably, TRPS1, FOXA1, TFAP2C, 
GLIS3, ELF3, and ESR1 TFs have the highest rank score. 
Also, PCGF2, HNF1B, and ZBED6 TFs were predicted as 
potential key regulators.

Peak set functional enrichment analysis
Peak set functional enrichment analysis, including GO 
and KEGG pathways for 7,308 meta-DBSs (correlated 

Table 2  Identified DBSs/ meta-DBSs through individual/ meta-analysis on eight studies of the MCF7 and T47D cell lines treated with 
10 nM and 100 nM E2

DBSs differentially bound sites, Meta-DBSs meta-differentially bound sites, nM Nanomolar

Analysis Accession number Cell line Treatment Dose (nM) DBSs or Meta-
DBSs (n)

Associated 
genes (n)

Individual analysis GSE94023 MCF7 E2 10 38,963 13,982

GSE99626 15,372 9,013

GSE67295 29,145 11,531

GSE115607 21,939 11,020

GSE80367 T47D 4,877 3,081

GSE23893 T47D 100 1,882 1,320

GSE23893 MCF7 11,155 6,272

GSE54855 10,343 5,710

GSE59530 29,915 10,817

Meta-analysis GSE94023 MCF7 10 23,308 10,503

GSE99626

GSE67295

GSE115607

GSE23893 100 7,796 4,591

GSE54855

GSE59530
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with common 617 genes) was performed. By enriching 
meta-DBSs and considering adjusted P-value ≤ 0.05, 94 
BPs, 3 CCs, and 12 MFs for GO terms and 9 KEGG path-
ways were detected (see Additional file 2: Tables S22 and 
S23). GO terms regarding BPs were annotated in cornifi-
cation (GO:0070268), tissue development (GO:0009888), 

regulation of anatomical structure morphogenesis 
(GO:0022603), anterior/posterior pattern specification 
(GO:0009952), phosphatidylcholine metabolic process 
(GO:0046470), negative regulation of transcription by 
RNA polymerase II (GO:0000122), response to metal ion 
(GO:0010038), negative regulation of RNA biosynthetic 

Fig. 4  Shared meta-DBSs between meta-analysis and individual studies based on TFBSs associated genes in MCF7 and T47D cell lines treated 
with E2. Among the peaks associated genes, only TFs are displayed. Nine of these TFs, which are also among the top 50 TFs obtained from ChEA3, 
are shown in purple. The six TFs only identified through meta-analysis are shown in orange. The marked blue TFs are mitochondrial TFs. TFs 
Transcription factors, DBSs Differentially bound sites, Meta-DBSs Meta-differentially bound sites
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process (GO:1902679), embryonic organ morphogen-
esis (GO:0048562), and response to inorganic substance 
(GO:0010035).

Also, enriched CCs terms were linked to the corti-
cal actin cytoskeleton (GO:0030864), cortical cytoskel-
eton (GO:0030863), and cytoskeleton (GO:0005856). 
Significant GO terms were found for MFs with regula-
tory region nucleic acid binding (GO:0001067), glucose 

binding (GO:0005536), lipid binding (GO:0008289), 
RNA polymerase II regulatory region DNA binding 
(GO:0001012), activating transcription factor binding 
(GO:0033613), DNA-binding transcription factor bind-
ing (GO:0140297), and transcription coregulator activity 
(GO:0003712) (Fig. 7A).

The nine enriched KEGG pathways included the 
Estrogen signaling pathway (hsa04915), Rap1 signaling 

Fig. 5  Genome-wide annotation of 7,308 meta-DBSs correlated with 617 common genes and response elements of ER between MCF7 and T47D 
cell lines treated with E2. A Distribution of ER-meta-DBSs relative to the nearest TSS across the human genome. B Pie plot of the ER-meta-DBSs 
percentages according to peak location across different genomic regions of the human genome. C Visualization of ER-meta-DBSs obtained 
from the UCSC genome browser (version hg38). D Venn pie of annotations and their overlap. TSS transcription start site
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pathway (hsa04015), Tight junction (hsa04530), Neuro-
trophin signaling pathway (hsa04722), Fluid shear stress 
and atherosclerosis (hsa05418), MAPK signaling pathway 
(hsa04010), Thyroid cancer (hsa05216), Bladder cancer 
(hsa05219), and Pathways in cancer (hsa05200) (Fig. 7B). 
Moreover, the top 50 TFs obtained from ChEA3 were 
examined. The TFs that enriched the Top 20 GO terms 
and nine KEGG pathways with the number of peaks in 
each route is shown in Fig. 7.

A general classification of pathways obtained from the 
enrichment of meta-DBSs indicated that most of those 
pathways play a role in cancer, environmental informa-
tion processing, and organismal systems (Fig. 8).

Evaluation of ChIP‑seq meta‑analysis results 
along with RNA‑seq meta‑analysis results
Recently we performed a meta-analysis of RNA-seq data 
on both MCF7 and T47D cell lines treated with 10  nM 
E2 for 8 h [32]. We investigated the expression of the top 
50 TFs predicted by ChEA3 (Table 3). Comparing meta-
analysis results of ChIP-seq and RNA-seq data showed 
that many TFs were up-regulated in RNA-seq meta-anal-
ysis or individual datasets.

Discussion
Breast cancer is the most incident cancer among women 
worldwide. The largest group of patients with BC is ER+. 
The estrogen receptor plays the role of a transcription 

factor when exposed to estrogen and triggers cellular 
proliferation and differentiation [2, 3]. Hence, evaluat-
ing the expression of TFs directly affected by ER can 
help identify and understand ER action’s mechanism 
in cancer progression. Remarkably, combining more 
samples and performing meta-analysis will produce 
more stringent results than single experiments [9]. To 
the best of our knowledge in the current study, for the 
first time, we applied the workflow for meta-analysis of 
ChIP-seq data based on TFBSs in the MCF7 cell lines 
treated with 10 nM and 100 nM E2. First, samples were 
integrated, and known and unknown batch effects were 
removed. Next, the meta-analysis approach was con-
ducted on TFBSs scores, and meta-DBSs were obtained. 
Our results showed significant peaks (specifically for TFs 
affected by ER) identified through the meta-analysis but 
not found in individual studies. For the strict selection of 
meta-DBSs, MCF7 cell lines meta-analysis results were 
compared with the results of T47D cell lines and initial 
individual studies, and common genes and the associated 
meta-DBSs were determined. With the enrichment of 
meta-DBSs correlated with common genes, several path-
ways with presumably clinical importance in BC were 
identified. Meta-DBSs-associated common genes were 
also enriched, and TFs were identified that have been 
predicted as potential key regulators in the progression of 
BC. In addition, we compared the meta-analysis results 
of both ChIP-seq and RNA-seq data.

Fig. 6  ChIP Enrichment Analysis (ChEA) for 617 meta-DBSs-associated common genes. The bar graph integrated_meanRank for the top 50 TFs 
using ChEA3 in MCF7 and T47D cell lines treated with E2. Each color represents a library, and each bar’s length indicates the weight of that TF 
in each library. TFs transcription Factors
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Fig. 7  Peak set functional enrichment analysis (PSFEA) for 7,308 meta-DBSs, including GO and KEGG pathways. (A) The chart of the top 20 GO 
terms and (B) nine KEGG pathways was obtained from 7,308 meta-DBSs in MCF7 and T47D cell lines treated with E2. Also, TFs that enriched 
GO terms and KEGG pathways are shown along with the number of peaks. TFs Transcription factors, DBSs Differentially bound sites, Meta-DBSs 
Meta-differentially bound sites
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Some of the differentially expressed genes (DEGs) 
identification methods in the RNA-seq context, such as 
DEseq2 [53] and edgeR [54], are also exploited to discover 
DBSs. However, the NOIseq package [26, 28] performs 
relatively better for obtaining DEGs [28]. Moreover, pack-
ages were developed for meta-analysis of RNA-seq data 
based on those methods [28, 55, 56]. To find meta-DBSs, 
we utilized the metaSeq package [28], in which NOIseq 
has been used. Before performing the meta-analysis, we 
faced two problems: (1) none of the mentioned methods 
removed unknown batch effects, and (2) the number of 
peaks and their associated genomic start and end inter-
vals were different among samples, and batch effects 
could not be removed. Therefore, sample preparation 
was required. To this end, we obtained the same number, 
regions, and scores of TFBSs using the DiffBind package.

Herein, POU5F1B, ZNF662, ZNF442, KIN, ZNF410, 
and SGSM2 TFs were found in the meta-analysis of 
MCF7 cell lines treated with 10 nM E2 but not in indi-
vidual studies. POU5F1B, a processed pseudogene 
highly homologous to OCT4, was recently shown to be 
transcribed in ER+ BC [57]. POU5F1B is specifically 
expressed in mammalian totipotent embryonic stem 
and germ cells and has a crucial role in regulating and 

maintaining pluripotency and self-renewal [57]. The 
Zinc finger protein family often functions in transcrip-
tional regulation through sequence-specific DNA bind-
ing [58]. ZNF662, ZNF442, and ZNF410 were involved 
in the regulation of transcription by RNA polymerase 
II [59]. It has shown that low expression of G protein-
coupled estrogen receptor 1 (GPER1) is significantly 
associated with adverse survival of BC patients [60]. 
ZNF662 was identified as one of the unique factors 
related to GPER-DNA binding [60]. ZNF442 plays a 
role in the strategy adopted by ER+ BC and triple-
negative breast cancer (TNBC) cell lines for maintain-
ing zinc homeostasis [61]. ZNF410 uniquely activates 
CHD4, one of the catalytic components of the Nucleo-
some Remodeling and Deacetylase (NuRD) complex 
[62]. NuRD has been shown to have opposing effects 
on cancer. For instance, promoting and inhibiting 
tumor growth and metastasis in different tissues such 
as ER+ BC [63, 64]. Recently, it has been shown that 
the Knockdown of DNA/RNA‑binding protein KIN17 
(KIN) promotes apoptosis of TNBC [65]. Small G pro-
tein signaling modulator 2 (SGSM2) is involved in ER+ 
BC metastasis by enhancing migrator cell adhesion via 
interaction with E-cadherin [66].

Fig. 8  Sankey diagram for categories of KEGG pathways
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With enrichment analysis of meta-DBSs-associ-
ated common genes by ChEA3, TFs including PCGF2, 
HNF1B, and ZBED6 were predicted as regulatory fac-
tors involved in BC progression. Based on our findings, 
no peaks associated with those TFs were found in indi-
vidual studies and meta-analysis results. Maybe it is 
because all TFs do not always regulate their own expres-
sion. Polycomb group proteins (PcG) play a critical role 
in cancer development, proliferation, senescence, and 
carcinogenesis [67]. PCGF2 serves as a tumor suppressor 
in BC, gastric cancer, and colon cancer, probably for the 
negative regulation of Akt activation [68]. Recent studies 

have shown that methylation of homeobox genes, such 
as the HNF1B, plays a critical role in BC’s insurgence or 
progression [69]. Zinc Finger BED-Type Containing 6 
(ZBED6) has been shown to repress insulin-like growth 
factor 2 (IGF2) transcription [59]. The role of ZBED6 has 
only been reported in TNBC but is not well understood 
in ER+ BC so far [70].

Most TFs indicated in Fig.  4 were shared among 
results of individual studies, meta-analysis, and the 
top 50 TFs obtained from ChEA3 (Fig.  6). The ESR1 
and PGR, which play an essential role in the develop-
ment of BC, were ranked as top-ranking TFs (Fig.  6). 

Table 3  Differential express of top 50 TFs using ChEA3 for 617 meta-DBSs-associated common genes [32–52]

TFs Transcription factors, Meta-DEGs Meta-differentially expressed genes, TNBC Triple-negative breast cancer
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Because ChEA3 ranks TFs only based on a gene list 
without any assumptions, it confirms the correctness of 
our results. It verifies that removing batch effects and 
performing a correct meta-analysis can produce more 
exact results. POLRMT and TFAM are human mito-
chondrial TFs [71]. As an essential mitochondrial DNA 
(mtDNA)-binding protein, TFAM functions in genome 
maintenance such as determining the abundance of the 
mitochondrial genome. Emerging evidence indicates 
that altered TFAM levels or mtDNA copy numbers may 
impact mitochondrial homeostasis in Alzheimer’s and 
other neurodegenerative diseases [71]. Several stud-
ies suggested that TFAM TFs are potential biomarkers 
for the prognosis of BC [72]. POLRMT is a mitochon-
drial RNA polymerase that requires TFAM for mito-
chondrial transcription initiation [73]. Targeting both 
those factors is a promising strategy for sensitizing BC 
cells to chemotherapy [72, 74]. Although most of the 
datasets analyzed in the present study have used the 
chip-anti-ER (Santa Cruz HC-20, cat# SC-543), the tag-
ging approach could alter the binding preferences of 
the protein, and therefore the experimental results.

Interestingly, the significant GO terms and KEGG 
pathways obtained from PSFEA in the present study 
were enriched by many predicted TFs by ChEA3 (Figs. 6 
and 7). Therefore, meta-analysis led to the recogni-
tion of TFs involved in the development of BC. Corni-
fication (GO:0070268) [75], anterior/posterior pattern 
specification (GO:0009952) [76], embryonic organ mor-
phogenesis (GO:0048562) [77], response to inorganic 
substance (GO:0010035) [78], and negative regulation of 
transcription by RNA polymerase II (GO:0000122) [79] 
have been previously reported in ER+ BC. Tissue devel-
opment (GO:0009888) [80] was enriched in BC. Corti-
cal actin cytoskeleton (GO:0030864) [81], and cortical 
cytoskeleton (GO:0030863) [81] in pancreatic cancer, 
and cytoskeleton (GO:0005856) [82, 83] in ovarian can-
cer were enriched but not reported in ER+ BC previ-
ously. Regulation of anatomical structure morphogenesis 
(GO:0022603) [84] in colorectal cancer and phosphati-
dylcholine metabolic process (GO:0046470) [85] in hepa-
tocellular carcinoma were enriched. Response to metal 
ion (GO:0010038) [86] in chronic myeloid leukemia cells, 
and negative regulation of RNA biosynthetic process 
(GO:1902679) [87] in Alzheimer’s Disease, were enriched 
but not reported in BC before. Regulatory region 
nucleic acid binding (GO:0001067) [88], lipid binding 
(GO:0008289) [89], RNA polymerase II regulatory region 
DNA binding (GO:0001012) [90], activating transcrip-
tion factor binding (GO:0033613) [91], DNA-binding 
transcription factor binding (GO:0140297) [92], tran-
scription coregulator activity (GO:0003712) [93] have 
been previously reported in ER+ BC. Glucose binding 

(GO:0005536) [94] was enriched in multiple myeloma 
but not reported in BC before.

The nine enriched KEGG pathways include Pathways 
in cancer (hsa05200) [95], Estrogen signaling pathway 
(hsa04915) [95], Rap1 signaling pathway (hsa04015) [96], 
Neurotrophin signaling pathway (hsa04722) [97], and 
Fluid shear stress and atherosclerosis (hsa05418) [98] 
have been previously reported in ER+ BC. MAPK sign-
aling pathway (hsa04010) [99] was enriched in MCF7 
cell lines of the resistance to treatment. Tight junction 
(hsa04530) [100], and Bladder cancer (hsa05219) [101, 
102] have already been reported tumor BC. A study has 
shown that Thyroid cancer (hsa05216) [103] is related to 
metabolic pathways which were enriched in TNBC.

According to the cases mentioned, GO terms and path-
ways previously approved concerning BC were enriched 
(Fig.  7). Moreover, many GO terms and pathways iden-
tified were associated with gastrointestinal cancers, 
including colorectal and hepatocellular carcinoma. In 
particular, our findings showed that many TFBSs asso-
ciated with mitochondrial genes are directly affected 
by ER, including POLRMT and TFAM TFs. Especially 
TFAM increased expression has been reported in a meta-
analysis of MCF7 cell lines treated with E2 [32]. This may 
clarify why the metabolism pathways were identified 
along with the estrogen signaling pathway in BC (Fig. 7 
and see Additional file 2: Table S22). Although some rela-
tionships are found between BC and hepatocellular car-
cinoma, more studies are needed on these TFs and their 
associated pathways.

The comparison of ChIP-seq and RNA-seq data meta-
analysis results showed that many TFs predicted by 
ChEA3 were up-regulated in RNA-seq meta-analysis 
results. There can be several reasons why some TFs are 
down-regulated. FOXA1 is a determinant of drug resist-
ance in breast cancer cells, and it has different functions 
in response to treatment in ER+ and TNBC cell lines [33] 
(Table 3). Investigation of primary regulatory regions has 
shown that there is plasticity in ER binding, with distinct 
ER binding profiles associated with clinical outcome. 
These differential ER binding profiles appear to be medi-
ated by FOXA1 [104].

SPDEF also is with both oncogenic and tumor-sup-
pressor functions in BC [105]. Therefore, according to 
its role in the cell, it can have a different expression. Fur-
thermore, the treatment period of RNA-seq data can be 
effective in the gene expressions, so it is possible that at 
one time, the expression of the gene is increased, and at 
another time, it is down-regulated.

Our study was constrained by the number of datasets 
with the same conditions. Although the results were 
remarkable and substantial, they could be more precise 
and reliable if more data were combined. In addition, 
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despite generating large volumes of datasets related to 
BC in databases, the data with the same conditions is 
negligible. Therefore, developing datasets with more uni-
form and focused conditions is could help to detect more 
precise meta-analysis results.

Conclusion
In the current study, we applied a workflow for integrat-
ing and performing meta-analysis of several ChIP-seq 
studies based on TFBSs scores in ER+ BC. The same 
number, regions, and scores of TFBSs were obtained for 
all samples. Then, the known and unknown batch effects 
were removed, and the meta-analysis was performed to 
obtain meta-DBSs. Some TFs were significantly identified 
in the meta-analysis but not in individual studies. Also, 
with meta-DBSs enrichment, many GO terms and path-
ways were identified that were not previously reported 
in BC. Finally, by enriching the meta-DBSs-associated 
genes, some TFs were prioritized and predicted as poten-
tial regulators. Those TFs were not found in the results 
of the meta-analysis and individual studies. Moreover, 
the results of the ChIP-seq meta-analysis were confirmed 
by comparing them with the meta-analysis of the RNA-
seq data. The results showed that many TFs predicted by 
ChEA3 were up-regulated in RNA-seq meta-analysis or 
individual datasets results. As a suggestion, this workflow 
can be applied to other types of BC, such as HER2+ and 
other diseases, provided that there are sufficient data-
sets with the same conditions. It can also be performed 
on other TFs involved in BC that cooperate with ER as 
a cofactor, revealing new insights into ER mechanism of 
action.
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Additional file 1: Figure S1. (A) The Heat map Correlation matrix and 
(B) PCA plot for the GSE94023 study. MCF7 cell line was treated with E2 
for different times, including 0 (treated with vehicle as control), 5, 10, 20, 

40, 80, 160, 320, 640, and 1280 minutes. According to the matrix, after 40 
minutes, E2-treated samples showed a more significant difference com-
pared to the control sample. Figure S2. The Heat map Correlation matrix 
for GSE94023, GSE99626, GSE67295, and GSE115607 studies. The default 
binding affinity matrix was obtained from the DiffBind package. The 
datasets with MCF7 cell lines that were treated with 10nM E2 for 40 or 45 
minutes were shown (A) before and (B) after normalization and unknown 
batch effect correction. Batch effect removal was performed using the 
ARSyNseq package in R. Figure S3. The PCA plot for GSE94023, GSE99626, 
GSE67295, and GSE115607 studies. The default binding affinity matrix 
was obtained from the DiffBind package. The datasets with MCF7 cell 
lines that were treated with 10nM E2 for 40 or 45 minutes were shown (A) 
before and (B) after normalization and unknown batch effect correction. 
Figure S4. The Heat map Correlation matrix for GSE23893, GSE54855, and 
GSE59530 studies. The default binding affinity matrix was obtained from 
the DiffBind package. The datasets with MCF7 cell lines that were treated 
with 100nM E2 for 40 or 45 minutes were shown (A) before and (B) after 
normalization and unknown batch effect correction. Batch effect removal 
was performed using the ARSyNseq package in R. Figure S5. The PCA 
plot for GSE23893, GSE54855, and GSE59530 studies. The default binding 
affinity matrix was obtained from the DiffBind package. The datasets with 
MCF7 cell lines that were treated with 100nM E2 for 40 or 45 minutes were 
shown (A) before and (B) after normalization and unknown batch effect 
correction.
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GSE54855, & GSE59530) MCF7 cell line treated with 100nM E2 for 45 
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from a meta-analysis on (GSE94023, GSE99626, GSE67295, & GSE115607) 
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(GSE23893, GSE54855, & GSE59530) MCF7 cell line treated with 100nM 
E2 for 45 minutes. Table S14. literature_ChIP-seq. Table S15. Enrichr. 
Table S16. ARCHS4—Coexpression. Table S17. ENCODE--ChIP-seq. 
Table S18. ReMap--ChIP-seq. Table S19. GTEx—Coexpression. Table S20. 
Integrated_topRank. Table S21. Integrated_meanRank. Table S22. Gene 
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MCF7 & T47D cell lines using Cistrome-GO. Table S23. KEGG pathways 
analysis for 7,308 meta-DBSs related to 617 common genes among MCF7 
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