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Abstract
Background: Persistent infection by high risk HPV types (e.g. HPV-16, -18, -31, and -45) is the main risk factor
for development of cervical intraepithelial neoplasia and cervical cancer. Tumor necrosis factor (TNF) is a key
mediator of epithelial cell inflammatory response and exerts a potent cytostatic effect on normal or HPV16, but
not on HPV18 immortalized keratinocytes. Moreover, several cervical carcinoma-derived cell lines are resistant
to TNF anti-proliferative effect suggesting that the acquisition of TNF-resistance may constitute an important step
in HPV-mediated carcinogenesis. In the present study, we compared the gene expression profiles of normal and
HPV16 or 18 immortalized human keratinocytes before and after treatment with TNF for 3 or 60 hours.

Methods: In this study, we determined the transcriptional changes 3 and 60 hours after TNF treatment of
normal, HPV16 and HPV18 immortalized keratinocytes by microarray analysis. The expression pattern of two
genes observed by microarray was confirmed by Northern Blot. NF-κB activation was also determined by
electrophoretic mobility shift assay (EMSA) using specific oligonucleotides and nuclear protein extracts.

Results: We observed the differential expression of a common set of genes in two TNF-sensitive cell lines that
differs from those modulated in TNF-resistant ones. This information was used to define genes whose differential
expression could be associated with the differential response to TNF, such as: KLK7 (kallikrein 7), SOD2 (superoxide
dismutase 2), 100P (S100 calcium binding protein P), PI3 (protease inhibitor 3, skin-derived), CSTA (cystatin A), RARRES1
(retinoic acid receptor responder 1), and LXN (latexin). The differential expression of the KLK7 and SOD2 transcripts
was confirmed by Northern blot. Moreover, we observed that SOD2 expression correlates with the differential
NF-κB activation exhibited by TNF-sensitive and TNF-resistant cells.

Conclusion: This is the first in depth analysis of the differential effect of TNF on normal and HPV16 or HPV18
immortalized keratinocytes. Our findings may be useful for the identification of genes involved in TNF resistance
acquisition and candidate genes which deregulated expression may be associated with cervical disease
establishment and/or progression.
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Background
Human papillomaviruses (HPVs) are double-stranded
DNA tumor viruses that infect keratinocytes of the ano-
genital tract epithelium [1]. Persistent infection by high
risk HPV types (e.g., HPV-16, -18, -31, and -45) is the
main risk factor for the development of cervical intraepi-
thelial neoplasia and cervical cancer [2,3]. High-risk HPV
DNA is detected in more than 90% of cervical carcinomas
worldwide [4] and it has been shown that HPV types 16
and 18 can immortalize normal cells in culture, a function
that is attributed to E6 and E7 oncogenes [5]. These are the
only HPV genes consistently retained and expressed in
cervical carcinomas. Besides, their continued expression is
required to maintain the malignant phenotype [6-8]. The
proteins encoded by these genes disturb cell proliferation
and differentiation by physical and functional interaction
with several cellular factors involved in cell cycle regula-
tion [9]. E6 is best known for its ability to bind to p53 and
induce its ubiquitin-dependent degradation [10,11],
whereas E7 was initially recognized by its ability to inter-
act with members of the retinoblastoma protein family,
namely pRb, p107 and p130 [12] and its capacity of
enhancing their degradation [13].

Persistence of HPV infections and development of neopla-
sia is influenced by local cell-mediated immune response
[14]. Tumor necrosis factor-alpha (TNF) is one of the
main mediators of skin and mucosa inflammation and
has a potent antiproliferative effect on normal primary
human keratinocytes (PHKs). This cytokine is a key regu-
lator of diverse inflammatory and immune processes in
human epithelia and its expression by keratinocytes is
enhanced in response to tissue injury, inflammation, viral
infection, and UV radiation [15-17]. Furthermore, TNF
has been identified as a key mediator for the regression of
HPV-induced lesions [18-21]. Previous studies from our
group had shown that TNF exerts a potent cytostatic effect
on normal and HPV16 immortalized keratinocytes. On
the other hand, keratinocytes immortalized by HPV18 or
SV40, as well as HPV16 or HPV18-positive cervical tumor-
derived cell lines continue to proliferate normally in the
presence of this cytokine [22,23]. In addition, it has been
observed that continuous HPV18-gene expression in
malignant HeLa-fibroblasts hybrids, as well as increased
tumorigenicity of HPV16-transformed human keratinoc-
ytes is associated with TNF resistance [24,25]. These
observations underscore the importance of TNF-resistance
acquisition in HPV mediated pathogenesis and suggest
that this event could be an important factor in HPV-asso-
ciated neoplasia outcome. However, the molecular basis
of HPV-mediated TNF resistance has not been elucidated.

The aim of the present study was to characterize and com-
pare the global transcription profile of normal and HPV-
immortalized keratinocytes. Furthermore, we sought to

analyze their response to TNF in order to identify differ-
ences that contribute to explain their divergent response
to this cytokine. For this purpose, we used microarray
analysis to determine transcriptional changes upon 3 and
60 hours after TNF exposure. The 3 hours treatment
would favor the identification of immediate early TNF
regulated genes. On the other hand, the 60 hours treat-
ment was used because the cytostatic effect exerted by this
cytokine on normal and HPV16-immortalized keratinoc-
ytes reaches its maximum at this time-point [22,23]. Our
experimental setting allowed us to: 1) identify genes that
are differentially expressed between TNF-sensitive and
TNF-resistant cells; 2) identify genes that are differentially
modulated by TNF at two-time points (3 and 60 hours);
3) analyze the effect of HPV-induced immortalization on
TNF-regulated genes and, 4) find genes that are differen-
tially expressed between cells immortalized by two differ-
ent high-risk HPV types. Using this approach, we
identified differentially expressed genes that are involved
in different cell processes such as immune and inflamma-
tory responses, cell differentiation, cell death, prolifera-
tion, extracellular matrix remodeling and DNA repair. The
implications of these results are discussed.

Methods
Cell Culture and TNF treatment
Cultures of primary human keratinocytes (PHK), recov-
ered from newborn foreskin (Cambrex, Walkersville, MD,
USA), were maintained in keratinocyte serum-free
medium – KSFM (Life Technology, Inc., Gaithersburg,
MD, USA) for 3 to seven passages [26]. HF698 and
HF18Nco are cell lines obtained from human keratinoc-
ytes immortalized by HPV16 and HPV18 whole genome,
respectively. These cell lines (from now on referred as
HPV16 and HPV18, respectively) were kindly provided by
R. Schlegel, Georgetown University Medical Center,
Washington, DC [27], were grown in 3+1 medium, con-
sisting of a mixture of 3 parts KSFM and 1 part DMEM,
supplemented with 10% fetal calf serum. Cells were
grown in 100-mm tissue culture dishes to 30% confluence
and treated with 2 nM of human recombinant TNF (Boe-
hringer Mannheim, Germany), for 3 or 60 hours. Cells
were then trypsinized, washed 3 times with PBS and fro-
zen until RNA extraction. For all time points, RNA was
obtained from two independent experiments, including
the control plates.

RNA extraction, amplification, labeling, and 
hybridizations
For each sample, total RNA was extracted using TRIzol
Reagent (Life Technologies, Inc., Grand Island, NY, USA)
following the procedure recommended by the manufac-
turer. Three micrograms of target and reference (a pool of
RNA from all control conditions) total RNA were linearly
Page 2 of 17
(page number not for citation purposes)



BMC Medical Genomics 2008, 1:29 http://www.biomedcentral.com/1755-8794/1/29
amplified using T7-based protocol, converted to cyanine-
modified cDNA, and labeled as described previously [28].

Hybridizations were performed in duplicate, using dye-
swap, on a cDNA platform of ORESTES representing
4,600 unique genes with known full-length sequence
selected from the clone collection derived from the
Human Cancer Genome Project [29]. cDNA amplifica-
tion, purification, identity verification and printing were
performed as previously described [28]. A detailed
description of the cDNA microarray platform used and
the raw data of this study are available at the GEO website
under the accession numbers GPL1930 and GSE4524,
respectively [30]. Slides were scanned on a confocal laser
scanner (Arrayexpress; Packard Bioscience, USA) and, for
each spot, signal and background intensities were meas-
ured using histogram method of Quantarray software
(version 3.0, Packard BioScience, BioChip Technologies
LLC, USA).

Statistical Analysis
Data analysis was performed with R project for statistical
computing [31] and tools of the associated project, Bio-
conductor [32]. Prior to analysis, signal intensity was cor-
rected by background subtraction, and data normalized
by loess method, using span = 0.4 and degree = 2. For the
identification of differentially expressed genes, we used
ANOVA model when just one variable was considered.
For the identification of differentially expressed genes in a
pair-wise manner, we used t-test and determined the
nominal p-value for each individual gene. Those nominal
p-values can be conservatively adjusted for multiple test-
ing with the Bonferroni correction by multiplying them
by the number of genes in our chip. For clustering samples
on the basis of their expression profile, we applied hierar-
chical clustering based on correlation distance and com-
plete linkage.

Northern Blotting
For Northern blot analysis, 15 μg of total RNA was frac-
tionated through a 1% denaturing agarose gel and trans-
ferred by capillarity onto Hybond N filters (GE Healthcare
BioSciences, NJ, USA). Prehybridization, hybridization,
and washes were performed as described by Church and
Gilbert [33]. The KLK7 and SOD2 cDNA probes were the
same used for immobilization in the array. The human
GAPDH cDNA probe was used as control for ensuring
equal RNA loading. Probes were labeled by random prim-
ing, using Ready-To-Go Labeling Beads (GE Healthcare
Bio-Sciences, NJ, USA) and [α-32P]dCTP (3000 Ci/mmol).
Nylon filters were exposed to Kodak Hyperfilm (GE
Healthcare BioSciences, NJ, USA) with intensifying
screen.

Electrophoretic mobility shift assay (EMSA)
Nuclear extracts were obtained from monolayer cultures
of PHK, and from cell lines HPV16 and HPV18 treated
with 2 nM of human recombinant TNF for 1 h. Briefly, cell
plates were washed with ice-cold PBS and cells were
scraped in 5 ml of PBS. Cells were transferred to a 15 ml
Falcon tube and centrifuged at 3000 rpm for 3 min. Cell
pellets were ressuspended in 4 ml of lysis buffer (10 mM
HEPES pH 7,9, 10 mM KCl, 0,2 mM EDTA, 1 mM DTT),
incubated on ice for 5 min, centrifuged and ressuspended
in 4 ml of lysis buffer. Nuclei obtained were centrifuged at
2000 rpm for 2 min, ressuspended in 100 μl of extraction
buffer (20 mM HEPES pH7,9, 0,42 M NaCl, 2 mM EDTA,
1 mM DTT, 1 mM PMSF, 2 μM pepstatin, 0,6 μM leupep-
tin, 25 mU/ml aprotinin) and incubated on ice for 30
min. Finally, the samples were centrifuged at 12000 rpm
for 15 min at 4°C. The supernatants were stored at -80°C.
The protein concentration was determined by the Brad-
ford method (Bio-Rad, CA, USA).

For gel retardation the following double-stranded oligo-
nucleotide, corresponding to the NF-κB binding
sequence, was used: forward-5'-GCCTGGGAAAGTC-
CCCTCAACT-3' (Invitrogen, CA, USA) was used. The
annealed oligonucleotide was labeled with [γ-32]ATP
(Amersham, Buckinghamshire, UK; 3,000 Ci/mmol)
using TK polynucleotide kinase according to the manufac-
turer instructions (Biolabs, MA, USA) and purified using
Sephadex G50 columns followed by phenol:chloroform
extraction and precipitation using 10 μg of salmon sperm
DNA as a carrier (Invitrogen, CA, USA). DNA pellets were
ressuspended in binding buffer (20 mM HEPES pH 7,9,
20% glycerol, 0,1 M KCl, 2 mM EDTA, 1 mM PMSF, 2 μM
pepstatin, 0,6 μM leupeptin, 25 mU/ml aprotinin) to a
final concentration of 2,5 fmol/μl. The incorporated radi-
oactivity was quantitated using a LS6500 scintillation
counter (Beckman Coulter, CA, USA).

The binding of NF-κB was performed in a reaction con-
taining 5 μg of protein extract, 5 μg of BSA, 5 μg of salmon
sperm DNA and binding buffer to a final volume of 32 μl
on ice. After 10 min, 8 μl of the [γ-32]ATP 5'-end-labeled
double-stranded oligonucleotide probe was added, and
the incubation was continued for an additional 15 min at
30°C. The DNA-protein complexes were resolved on 4%
nondenaturing polyacrylamide gels (29:1 cross-linking
ratio), dried, and exposed overnight to X-ray films (Amer-
sham, Buckinghamshire, UK).

Results
Glass arrays containing 4.800 cDNA sequences were used
in order to determine the effects of HPV infection in
human keratinocytes as well as the impact of TNF treat-
ment on global gene expression, in HPV negative or posi-
tive cells.
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In order to identify differentially expressed genes as a
function of a unique variable (cell type or TNF-treatment)
our dataset was first analyzed by one way ANOVA. The
comparisons performed allowed us to determine 1) genes
that are differentially expressed between TNF-sensitive
and TNF-resistant cells; 2) identify genes that are differen-
tially modulated by TNF at two-time points (3 and 60
hours); 3) analyze the effect of HPV-induced immortaliza-
tion on TNF-regulated genes and, 4) find genes that are
differentially expressed between cells immortalized by
two different high-risk HPV types (Figure 1).

Differentially expressed genes as a function of cell type or 
TNF treatment
The identification of differentially expressed genes, with
statistical significance, as a function of cell type was per-
formed by ANOVA. Samples and differentially expressed
genes (cutoff p-value <10-10) were grouped hierarchically,
using correlation distance and complete linkage (Figure
2). As it can be observed, normal (PHK) and HPV16-

immortalized keratinocytes (HPV16), which are sensitive
to TNF cytostatic effect, grouped together while TNF-
resistant HPV18-immortalized cell line (HPV18) formed
an independent branch. This indicates that TNF-sensitive
cell lines share a group of genes which are regulated in a
way that clearly differentiate them from the TNF-resistant
one. Samples were further clusterized by the time in cul-
ture after the last medium change (3 or 60 hs) and finally
separated as a function of TNF treatment. This clusteriza-
tion pattern may reflect differences in cell density and
other cultures variables such as nutrients availability or
medium conditioning. Initially, all treatments were per-
formed using 30% cell density cultures. As expected, due
to TNF cytostatic effect on normal and HPV16-immortal-
ized keratinocytes, cell density at the end of the 60 hours
period was different between treated (40–50%) and con-
trol cells (70–80%) for these cell lines. On the other hand,
both cytokine treated and control HPV18-immortalized
cells reached 80–90% cell density by the end of the 60
hours period. Flow-cytometry analysis revealed that the
TNF effect on sensitive cells was characterized by the accu-
mulation of cells in the G1-phase of the cell cycle. Con-
versely, TNF-induced G1-arrest was not observed in
HPV18-immortalized keratinocytes [[22,23] and data not
shown]. Finally, no differences in cell density were
observed for cultures corresponding to 3 hours-treatment
group.

Among the differentially regulated genes we found some
related with inflammatory response (SOD2, TGFB1,
CD44, INHBA, OAS1, SIMP), epidermal development,
differentiation and proliferation (ADAMST1, RARRES1,
CREG, HBP17, MCM2, PRSS1, S100P, CREG1), proteoly-
sis regulation (KLK7, PI3, LXN), and cell adhesion (CD44,
PARVA, PROS1). The name and function of the genes
described are listed in Table 1. We next determined the
global changes in gene expression as a function of TNF
treatment. The name and annotated function of the iden-
tified genes that best distinguish samples based on TNF
treatment (cutoff p-value <10-2,9) are listed in Table 2. As
expected, many of these genes are involved in the inflam-
matory response and/or are direct targets of TNF e.g.
CCL20, CD44, HLA-F, IL1F9, NFKBIA, INHBA, SOD2,
MARCKS, RFX5. Samples and genes were hierarchically
clusterized on the basis of their correlation distance using
complete linkage (Figure 3). Samples from TNF-treated
normal keratinocytes (PHK) grouped together and apart
from the others. HPV-positive samples exhibited a com-
plex clusterization pattern suggesting that the presence of
either HPV16 or 18 has an impact on TNF-regulated gene
expression. Furthermore, the grouping of treated PHKs
apart from the other samples could reflect the fact that
PHKs are the only normal cells used in this study and, as
such, the only cell type expected to have an unaltered
TNF-signaling network. This could contribute to explain

Experimental setup for the analysis of HPV and TNF effects on keratinocytes gene expressionFigure 1
Experimental setup for the analysis of HPV and TNF 
effects on keratinocytes gene expression. In order to 
characterize and compare the global transcription profile of 
normal and HPV-immortalized keratinocytes and to analyze 
their response to TNF we used an experimental setting that 
allowed us to: 1) identify differential expressed genes 
between normal PHK, HPV16 and HPV18-immortalized 
keratinocytes (comparisons represented by dashed arrows); 
2) identify genes modulated by TNF upon treatment for 
three and sixty hours (comparisons represented by solid 
arrows) and; 3) compare the effect of TNF between normal 
PHK and cells immortalized by two different high-risk HPV 
types (comparisons represented by round dot arrows).

HPV18 TNF
(3 and 60h) 

PHK TNF
(3 and 60h) 

HPV16 TNF
(3 and 60h) 

PHK 
(3 and 60h) 

HPV16 
(3 and 60h) 

HPV18 
(3 and 60h) 
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Hierarchical grouping based on differentially expressed genes as a function of cell typeFigure 2
Hierarchical grouping based on differentially expressed genes as a function of cell type. These genes where identi-
fied by the ANOVA method and the samples where grouped considering the correlation distance and complete linkage. After 
sample grouping the genes (p values <10-10) were hierarchically grouped by their correlation distances. High gene expression is 
shown in red, low gene expression is shown in green and black indicates non-differential gene expression. Samples: Primary 
human keratinocytes: controls and treated for 3 or 60 hours with TNF, respectively (PHK_3H, PHK_60H, PHK_3H.TNF, 
PHK_60H.TNF); HPV16-immortalized keratinocytes: controls and treated for 3 or 60 hours with TNF, respectively 
(HPV16_3H, HPV16_60H, HPV16_3H.TNF, HPV16_60H.TNF); HPV18-immortalized keratinocytes: controls and treated with 
3 or 60 hours for TNF, respectively (HPV18_3H, HPV18_60H, HPV18_3H.TNF, HPV18_60H.TNF).
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Table 1: Name and function of the differentially expressed genes that best distinguish samples by cell type variable

GENE UniGene ID GENE NAME FUNCTION

ADAMTS1 Hs.534115 disintegrin-like and metalloprotease (reprolysin type) negative regulation of cell proliferation
ARHGEF10 Hs.443460 Rho guanine nucleotide exchange factor (GEF) 10 GTPase activator activity
CD44 Hs.502328 CD44 antigen cell adhesion
CITED1 Hs.40403 Cbp/p300-interacting transactivator transcription regulator activity
CREG Hs.5710 cellular repressor of E1A-stimulated genes 1 cell proliferation
CSTA Hs.518198 cystatin A (stefin A) cysteine protease inhibitor activity
D4S234E Hs.518595 DNA segment on chromosome 4 (unique) 234 expressed 

sequence
dopamine receptor signaling pathway

DHRS3 Hs.289347 dehydrogenase/reductase (SDR family) member 3 fatty acid metabolism
EPB41L1 Hs.437422 erythrocyte membrane protein band 4.1-like 1 structural molecule activity
FLJ20105 Hs.47558 FLJ20105 regulation of transcription
FLJ21511 Hs.479703 FLJ21511 unknown function
FLJ21616 Hs.591836 FLJ21616 regulation of transcription
FLJ30525 Hs.7962 FLJ30525 unknown function
GALNT11 Hs.647109 UDP-N-acetyl-alpha-D-galactosamine transferase activity, transferring glycosyl groups
GC20 Hs.315230 translation factor sui1 homolog regulation of translational initiation
GLDC Hs.584238 glycine dehydrogenase glycine metabolism
GSR Hs.271510 glutathione reductase glutathion metabolism
HBP17 Hs.1690 fibroblast growth factor binding protein 1 regulation of cell proliferation
INHBA Hs.28792 inhibin, beta A cell cycle arrest, negative regulation of immune cell differentiation
JPH3 Hs.592068 junctophilin 3 unknown function
KIAA0368 Hs.368255 KIAA0368 ER-associated protein catabolism
KLK7 Hs.151254 kallikrein 7 (chymotryptic, stratum corneum) epidermis development, proteolysis and peptidolysis, chymotrypsin 

activity
LCN2 Hs.204238 lipocalin 2 (oncogene 24p3) transporter activity
LXN Hs.478067 latexin enzyme inhibitor activity
MAL2 Hs.201083 T-cell differentiation protein 2 Unknown function
MCM2 Hs.477481 minichromosome maintenance deficient 2 cell cycle
MGC45400 Hs.389734 transcription elongation factor A (SII)-like 8 translation elongation factor activity
MGEA5 Hs.500842 meningioma expressed antigen 5 (hyaluronidase) glycoprotein catabolism
MYO5B Hs.200136 acetyl-Coenzyme A acyltransferase 2 fatty acid metabolism
NMES1 Hs.112242 normal mucosa of esophagus specific 1 unknown function
NMU Hs.418367 neuromedin U neuropeptide signaling pathway, digestion
NT5E Hs.153952 5'-nucleotidase, ecto (CD73) DNA metabolism
OAS1 Hs.524760 2',5'-oligoadenylate synthetase 1 immune response to viral infections
ODC1 Hs.467701 ornithine decarboxylase 1 polyamine biosynthesis
PARVA Hs.607144 parvin, alpha cell adhesion, actin binding
PEX3 Hs.7277 peroxisomal biogenesis factor 3 peroxisome organization
PI3 Hs.112341 protease inhibitor 3, skin-derived (SKALP) elastase-specific inhibitor
PLAU Hs.77274 plasminogen activator chemotaxis
PPGB Hs.517076 protective protein for beta-galactosidase intracellular protein transport
PROS1 Hs.64016 protein S (alpha) cell adhesion, endopeptidase inhibitor activity
PRSS11 Hs.501280 protease, serine, 11 (IGF binding) insulin-like growth facto binding, regulation of cell growth
RARRES1 Hs.131269 retinoic acid receptor responder negative regulation of cell proliferation
RDH-E2 Hs.170673 epidermal retinal dehydrogenase 2 oxidoreductase activity
RPL15 Hs.381219 ribosomal protein L15 protein biosynthesis
RUTBC3 Hs.474914 RUN and TBC1 domain containing 3 unknown function
S100P Hs.440880 S100 calcium binding protein P cell cycle progression and differentiation
SEPT10 Hs.469615 septin 10 cell cycle
SF3B4 Hs.516160 myotubularin related protein 11 inositol or phosphatidylinositol phosphatase activity
SIMP Hs.475812 immunodominant MHC-associated peptides protein amino acid glycosylation
SMOC2 Hs.487200 SPARC related modular calcium binding calcium ion binding
SOD2 Hs.487046 superoxide dismutase 2 age-dependent response to reactive oxygen species, cellular defense 

response
STAF65 (gamma) Hs.6232 SPTF-associated factor 65 gamma regulation of transcription, DNA- dependent
SYTL3 Hs.436977 synaptotagmin-like 3 intracellular protein transport
TFRC Hs.529618 transferrin receptor (p90, CD71) endocytosis
TGFB1 Hs.645227 transforming growth factor, beta 1 cell proloferation
TPD52 Hs.368433 tumor protein D52 morphogenesis
TPX2 Hs.244580 microtubule-associated protein homolog cell proliferation
TRIM31 Hs.493275 tripartite motif-containing 31 protein ubiquitination, ubiquitin ligase activity
YME1L1 Hs.499145 YME1-like 1 (S. cerevisiae) protein catabolism
ZNF198 Hs.644041 zinc finger protein 198 regulation of transcription, DNA- dependent

*Genes are listed in alphabetical order. The cutoff p-value was set as <10-10.
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the differences in gene expression upon TNF treatment
observed between normal and HPV-immortalized kerati-
nocytes.

Since our experimental setting included the comparative
analysis of global gene expression at two time points (3 or
60 hours), we searched for genes that best differentiate
our samples as a function of time. We found 48 genes that
clearly differentiate samples from the analyzed time
points. The name and annotated function of the identified

genes (cutoff p-value <10-9) are listed in additional file 1.
Hierarchical clusterization divided samples in two main
branches (additional file 2). Each branch was exclusively
composed of samples from the same time point, namely,
3 or 60 hours. Samples from the 3 hours-time point
formed a secondary branch that divided normal from
HPV-immortalized keratinocytes. On the other hand,
samples from the 60 hours-time point formed a secondary
branch that divided normal and HPV16-immortalized

Table 2: Name and function of the differentially expressed genes that best distinguish samples by TNF treatment variable

GENE UniGene ID GENE NAME FUNCTION

ADORA2b Hs.167046 adenosine A2b receptor activation of MAPK
AKAP1 Hs.463506 A kinase (PRKA) anchor protein 1 RNA binding
BTG2 Hs.519162 BTG family, member 2 negative regulation of cell proliferation
C3 Hs.529053 complement component 3 inflammatory response
CCL20 Hs.75498 chemokine (C-C motif) ligand 20 inflammatory response
CD44 Hs.502328 CD44 antigen cell adhesion
cig5 Hs.17518 radical S-adenosyl methionine domain containing 2 Catalytic activity
CLCA4 Hs.546343 chloride channel, calcium activated, family member 4 chloride transport
DC-UbP Hs.179852 dendritic cell-derived ubiquitin-like protein Protein modification
FAD104 Hs.159430 fibronectin type III domain containing 3B cell differentiation
FLJ21511 Hs.479703 FLJ21511 Unknown function
FMNL3 Hs.179838 formin-like 3 cell organization and biogenesis
GFPT2 Hs.30332 glutamine-fructose-6-phosphate transaminase 2 carbohydrate biosynthesis
HLA-F Hs.519972 major histocompatibility complex, class I, F antigen presentation, endogenous antigen
IL1F9 Hs.211238 interleukin 1 family, member 9 inflammatory response
INHBA Hs.28792 inhibin, beta A cell cycle arrest, negative regulation of immune cell 

differentiation
KIAA0303 Hs.133539 microtubule associated serine/threonine kinase family member 4 protein kinase activity
KIAA1279 Hs.279580 KIAA1279 Unknown function
LAP3 Hs.479264 leucine aminopeptidase 3 Protein metabolism
MARCKS Hs.75061 MARCKS-like 1 calmodulin binding, macrophage activation
MGAT4B Hs.437277 mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-

acetylglucosaminyltransferase, isoenzyme B
cytokine activity

MGC45400 Hs.389734 transcription elongation factor A (SII)-like 8 translation elongation factor activity
MMP9 Hs.297413 matrix metalloproteinase 9 proteolysis and peptidolysis
NFKBIA Hs.81328 nuclear factor of kappa light polypeptide gene enhancer in B-

cells inhibitor, alpha
cytoplasmic sequestering of NF-kappaB

NMES1 Hs.112242 normal mucosa of esophagus specific 1 Unknown function
OAS1 Hs.524760 2',5'-oligoadenylate synthetase 1 immune response to viral infections
PLAU Hs.77274 plasminogen activator chemotaxis
RDH-E2 Hs.170673 epidermal retinal dehydrogenase 2 oxidoreductase activity
RFX5 Hs.166891 regulatory factor X, 5 inflammatory response, HLA class II expression
RIG-1 Hs.17466 retinoic acid receptor responder (tazarotene induced) 3 negative regulation of cell proliferation
RIPK2 Hs.103755 receptor-interacting serine-threonine kinase 2 inflammatory response
SASH1 Hs.193133 SAM and SH3 domain containing 1 Negative regulation of cell cycle
SDCBP Hs.200804 syndecan binding protein (syntenin) intracellular signaling cascade, interleukin-5 receptor 

binding
SEC24A Hs.211612 SEC24 related gene family, member A intracellular protein transport
SERPINB2 Hs.514913 encoding serine (or cysteine) proteinase inhibitor, clade B 

(ovalbumin), member 2
anti-apoptosis

SF3B4 Hs.412818 myotubularin related protein 11 RNA splicing
SOD2 Hs.487046 superoxide dismutase 2 age-dependent response to reactive oxygen species, 

cellular defense response
TMSB4 Hs.522584 thymosin, beta 4, X-linked cytoskeleton organization and biogenesis
VMP1 Hs.444569 transmembrane protein 49 Unknown function

*Genes are listed in alphabetical order. The cutoff p-value was set as <10-2,9.
Page 7 of 17
(page number not for citation purposes)



BMC Medical Genomics 2008, 1:29 http://www.biomedcentral.com/1755-8794/1/29

Page 8 of 17
(page number not for citation purposes)

Hierarchical grouping based on differentially expressed genes as a function of TNF treatmentFigure 3
Hierarchical grouping based on differentially expressed genes as a function of TNF treatment. These genes 
where identified by the ANOVA method and the samples where grouped considering the correlation distance and complete 
linkage. After sample grouping the genes (p values <10-2,9) were hierarchically grouped by their correlation distances. High 
gene expression is shown in red, low gene expression is shown in green and black indicates non-differential gene expression. 
Samples: Primary human keratinocytes: controls and treated for 3 or 60 hours with TNF, respectively (PHK_3H, PHK_60H, 
PHK_3H.TNF, PHK_60H.TNF); HPV16-immortalized keratinocytes: controls and treated for 3 or 60 hours with TNF, respec-
tively (HPV16_3H, HPV16_60H, HPV16_3H.TNF, HPV16_60H.TNF); HPV18-immortalized keratinocytes: controls and 
treated for 3 or 60 hours with TNF, respectively (HPV18_3H, HPV18_60H, HPV18_3H.TNF, HPV18_60H.TNF).
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keratinocytes (TNF-sensitive samples) from HPV18-
immortalized keratinocytes (TNF-resistant samples).

Differentially expressed genes between TNF-sensitive and 
TNF-resistant cells
In order to identify differentially expressed genes between
specific samples we performed a series of pair-wise com-
parisons. For each pair-wise comparison, we generated a
list of differentially expressed genes with p-value lower
than 0,01. The complete list of all pair-wise comparisons
performed is presented in additional file 3. We next aimed
to characterize genes that were differentially expressed
between TNF-sensitive (PHK and HPV16) and TNF-resist-
ant cells (HPV18). To achieve this goal we selected the
thirty genes with the lowest p-values that best distinguish
both PHK and HPV16 from HPV18 and the thirty genes
with lowest p-values that best distinguish both PHK+TNF
and HPV16+TNF from HPV18+TNF (considering treat-
ment with TNF for 3 h). Twelve genes were common to
both lists giving a total of 48 different genes identified
(Table 3). Using the expression profile of these 48 genes,
samples were grouped hierarchically, based on their corre-
lation distance and complete linkage (Figure 4).

Using this approach we observed that genes involved with
cell cycle control (CCNA2, CDCA2, CDK2AP1), epider-
mis development, differentiation and proliferation
(KLK7, ALDH3A2, PI3, APG12L, BCLAF1, DEK, MAPRE1,
S100P, RRAGA, SFRP1), protein ubiquitination (APPBP1)
and cell adhesion (BOC, PROS1, SDCBP, THBS1, JPH3),
among others, were differentially expressed between TNF-
sensitive and TNF-resistant cells (Table 3). These analyses
were also performed considering TNF treatment for 60h
(available as additional files 4 and 5).

Validation on KLK7 and SOD2 as differentially expressed 
genes
We identified a group of genes whose differential expres-
sion could be associated with the differential response to
TNF of the cell lines studied, namely: KLK7 (kallikrein 7),
SOD2 (superoxide dismutase 2), S100P (S100 calcium bind-
ing protein P), PI3 (protease inhibitor 3, skin-derived), CSTA
(cystatin A), RARRES1 (retinoic acid receptor responder 1),
and LXN (latexin). Based on the reported function as well
as the expression profile observed, KLK7 and SOD2 genes
were selected for further analysis. The expression pattern
of these genes observed by microarray was confirmed by
Northern Blot in control and TNF-treated (60 hours) sam-
ples from all cell lines used (Figures 5A and 5B). As it can
be observed, KLK7 is equally expressed in TNF-treated or
untreated HPV18-immortalized cells but is not detected
in PHK or HPV16-immortalized cells, even after cytokine
treatment. On the other hand, we observed that SOD2
expression is up-regulated by TNF in both PHK and
HPV16-immortalized cells but not in HPV18-immortal-

ized cells, confirming the data obtained by microarray
(Figures 5A and 5B).

NF-κB is differentially activated in HPV-16- and HPV-18-
infected cells
It has been reported that NF-κB activation plays an impor-
tant role in SOD2 induction by TNF. So we hypothesized
that the differential expression of SOD2 could be due to
the presence of different levels of activated NF-κB after
TNF treatment between TNF-sensitive and TNF resistant
cells. In order to address this hypothesis NF-κB activation
was determined by electrophoretic mobility shift assay
(EMSA) using specific oligonucleotides and nuclear pro-
tein extracts. Interestingly, we observed that normal as
well as HPV16-immortalized keratinocytes exhibited a
clear activation of NF-κB as shown by the increase of this
factor levels in nuclear protein extracts after TNF treat-
ment (Figure 6). On the other hand, NF-κB activation in
TNF-resistant HPV18-immortalized cells was below the
level of detection (Figure 6, lanes 9 and 10). This
prompted us to analyze if NF-κB activation was also
altered in other HPV-positive cell lines previously
reported to be resistant to TNF cytostatic effect [[22,23],
and data not shown]. To address this issue we performed
EMSA using nuclear protein extracts obtained from
HPV16-positive (SiHa) or HPV18-positive (HeLa and
SW756) cervical cancer derived cell lines cultures. We
observed that TNF-resistant cells exhibited reduced NF-κB
activation when compared to normal PHK (additional file
6). Altogether, these observations suggest that alteration
of TNF-signaling pathway leading to NF-κB activation is a
common event in HPV-positive cell lines resistant to this
cytokine.

Discussion
Production and secretion of inflammatory cytokines are
among the main events that take place upon viral infec-
tion. These molecules coordinate host cell-mediated
immune response by recruiting cellular elements from the
immune system and by regulating gene expression on tar-
get cells [34,35]. The pleiotropic cytokine TNF is a key reg-
ulator of inflammation of the epithelia with a well-
documented capacity to induce growth arrest in normal or
HPV16-immortalized keratinocytes, mainly in the G0/G1
phase of the cell cycle [36]. Conversely, we have previ-
ously reported that HPV18-immortalized and both
HPV16 or HPV18-transformed cell lines are resistant to
TNF-induced growth arrest [22,23].

In order to address the yet unknown molecular bases of
this difference we applied cDNA microarray technology to
compare the global gene expression profiles of TNF-sensi-
tive normal and HPV16-immortalized keratinocytes with
that of TNF-resistant HPV18-immortalized ones. Some
limitations of this study are the use of a reduced number
Page 9 of 17
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Table 3: List of differentially expressed genes that best distinguish TNF-resistant cells (HPV18) from TNF-sensitive cells (PHK and 
HPV16), in normal culture conditions or upon treatment with TNF for 3 hours

(PHK and HPV16) vs HPV18 (PHK_TNF and HPV16_TNF) vs HPV18_TNF

GENE GENE NAME FOLD p VALUE FOLD p VALUE

ABCE1 ATP-binding cassette, sub-family E (OABP), 
member 1

0.592 0.001384 ---- ----

ACBD5 acyl-Coenzyme A binding domain containing 
5

---- ---- 0.378 0.00086

ALDH3A2 encoding aldehyde dehydrogenase 3 family, 
member A2

1.623 0.00122 ---- ----

APG12L APG12 autophagy 12-like (S. cerevisiae) 1.739 0.000924 ---- ----
APPBP1 amyloid beta precursor protein binding 

protein 1
0.540 0.000283 ---- ----

ARF4L ADP-ribosylation factor 4-like ---- ---- 0.578 5.70E-05
BCLAF1 BCL2-associated transcription factor 1 0.611 0.000876 ---- ----
BOC brother of CDO ---- ---- 2.337 6.00E-06
CCNA2 cyclin A2 0.577 0.000604 ---- ----
CDCA2 cell division cycle associated 2 ---- ---- 0.539 7.20E-05
CDK2AP1 CDK2-associated protein 1 ---- ---- 1.523 0.000148
CPSF3 cleavage and polyadenylation specific factor 

3
0.586 0.000466 ---- ----

CYP1B1 cytochrome P450, family 1, subfamily B, 
polypeptide 1

0.499 0.001386 ---- ----

DEK DEK oncogene 0.480 0.000278 ---- ----
FAM31C family with sequence similarity 31, member 

C
---- ---- 2.548 0.000663

FLJ20105 hypothetical protein LOC54821 0.026 5.00E-06 0.029 2.00E-06
GALNAC4S-6ST B cell RAG associated protein 1.827 0.000145 1.673 0.000215
H105E3 encoding NAD(P) dependent steroid 

dehydrogenase-like
---- ---- 0.569 6.80E-05

HLCS holocarboxylase synthetase ---- ---- 1.551 0.00011
JPH3 junctophilin 3 0.154 0.000192 ---- ----
KIAA0795 kelch-like 18 (Drosophila) 0.857 0.001325 ---- ----
KIAA1023 IQ motif containing E 1.575 0.000723 ---- ----
KIF1B kinesin family member 1B ---- ---- 0.570 0.000632
KLK7 encoding kallikrein 7 (chymotryptic, stratum 

corneum)
0.421 0.000416 0.374 2.30E-05

LCN2 lipocalin 2 (oncogene 24p3) ---- ---- 0.216 0.000686
LOC151242 protein phosphatase 1, regulatory (inhibitor) 1.928 0.000268 ---- ----
Lrp2bp low density lipoprotein receptor-related 

protein binding protein
0.629 0.000574 ---- ----

MAPRE1 encoding microtubule-associated protein, 
RP/EB family, member 1

0.410 0.001068 0.503 4.20E-05

MBD2 methyl-CpG binding domain protein 2 0.680 0.001247 ---- ----
MGC35048 hypothetical protein MGC35048 ---- ---- 0.499 0.000211
MRPS6 mitochondrial ribosomal protein S6 ---- ---- 1.460 0.000161
MYO5B acetyl-Coenzyme A acyltransferase 2 0.353 0.000104 0.292 4.10E-05
NMES1 normal mucosa of esophagus specific 1 0.324 0.000294 0.244 7.00E-06
NPR2 encoding natriuretic peptide receptor B/

guanylate cyclase B
---- ---- 0.435 0.000234

ODC1 ornithine decarboxylase 1 1.660 0.000886 ---- ----
PI3 protease inhibitor 3, skin-derived (SKALP) 0.213 0.000274 0.207 1.80E-05
PROS1 protein S (alpha) 1.807 0.000633 ---- ----
PTP4A1 protein tyrosine phosphatase type IVA, 

member 1
0.478 0.000385 0.497 1.80E-05

RRAGA Ras-related GTP binding A ---- ---- 1.510 0.000301
RUTBC3 RUN and TBC1 domain 3 0.518 0.000704 0.450 0.000131
S100P S100 calcium binding protein P 0.101 0 0.102 0
SDCBP syndecan binding protein (syntenin) 0.456 0.000395 ---- ----
SFRP1 secreted frizzled-related protein 1 ---- ---- 0.502 5.10E-05
SLC35B3 solute carrier family 35, member B3 ---- ---- 1.990 0.000304
STAF65 (gamma) SPTF-associated factor 65 gamma 0.021 1.00E-06 0.028 0
THBS1 thrombospondin 1 ---- ---- 2.712 0.000225
VMP1 likely ortholog of rat vacuole membrane 

protein 1
---- ---- 1.547 0.000899

YME1L1 YME1-like 1 (S. cerevisiae) 0.373 2.60E-05 0.333 5.00E-06

*Genes are listed in alphabetical order. Underlined genes were identified as differentially expressed between TNF sensitive and TNF resistant cells in both culture conditions.
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Supervised hierarchical grouping based on differentially expressed genes between normal/HPV16-immortalized keratinocytes and HPV 18-immortalized ones after treatment with TNF for 3 hoursFigure 4
Supervised hierarchical grouping based on differentially expressed genes between normal/HPV16-immortal-
ized keratinocytes and HPV 18-immortalized ones after treatment with TNF for 3 hours. High gene expression is 
shown in red, low gene expression is shown in green and black indicates non-differential gene expression. Samples: Primary 
human keratinocytes: controls and treated for 3 hours with TNF, respectively (PHK_3H, PHK_3H.TNF); HPV16-immortalized 
keratinocytes: controls and treated for 3 hours with TNF, respectively (HPV16_3H, HPV16_3H.TNF); HPV18-immortalized 
keratinocytes: controls and treated for 3 hours with TNF, respectively (HPV18_3H, HPV18_3H.TNF).
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of samples and the existence of differences in cell culture
conditions which are inherent to our experimental set-
ting, i.e. the differences in cell density at the different
time-points described above. However, using this
approach we identified a group of genes that clearly dis-
tinguish both cells groups (Figure 2 and Table 1). This
indicates that TNF-sensitive cell lines share a group of
genes which are regulated in a way that clearly differenti-
ate them from the TNF-resistant one.

On the other hand, when we analyzed changes in global
gene expression as a function of TNF treatment we
observed that HPV16 and HPV18 samples could not be
distinguished from each other while normal keratinocytes
could be readily discriminated (Figure 3). This observa-
tion suggests that the presence of either HPV16 or 18 has

an impact on TNF-regulated gene expression. In line with
these observations, several studies have shown that HPV
positive cells exhibit impaired TNF pathways [37,38].
Moreover, it has been reported that the effects of TNF on
HPV-harboring cells depends on variables as cell type
studied, the virus type present and culture conditions (i.e.,
growth factors availability). This cytokine is capable of
inducing the proliferation of HPV16-immortalized
human cervical epithelial cells cultures in the absence of
growth factors through an autocrine, EGF receptor-
dependent, pathway [39]. Besides, TNF can upregulate
E6/E7 RNA expression and cyclin-dependent kinase activ-
ity in these cells [40]. Conversely, it has been reported that
TNF exerts a potent cytostatic effect on HPV16-immortal-
ized keratinocytes while HPV18-immortalized as well as
cervical carcinoma-derived HPV-positive cell lines remain

Differential expression of KLK7 and SOD2 transcriptsFigure 5
Differential expression of KLK7 and SOD2 transcripts. A. Detail of the supervised hierarchical grouping based on dif-
ferentially expressed genes between normal/HPV16-immortalized keratinocytes and HPV 18-immortalized ones, after treat-
ment with TNF for 60 hours. B. Northern blot analysis of KLK7 and SOD2 transcription levels. Arrows indicate the two 
alternative splicing products of KLK7 in HPV18-immortalized keratinocytes (GenBank # NM_005046); the SOD2 transcript is 
induced by TNF in both PHK and HPV16-immortalized cells but not in HPV18-immortalized cells (GenBank # NM_00636). A 
probe against GAPDH was used to monitor comparable loading between samples.
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unaffected [22,23]. Furthermore, it has been observed
that increased tumorigenicity of human keratinocytes
transformed by HPV16 is associated with resistance to
TNF cytostatic effect [24]. Finally, it was demonstrated
that TNF downregulates HPV18 transcription in non-
malignant HeLa-fibroblasts hybrids, while viral expres-
sion in tumorigenic hybrids segregants as well as in paren-
tal HeLa cells remained undisturbed [25]. On the other
hand, it has been consistently observed that TNF nega-
tively regulates normal keratinocytes proliferation in
monolayer [22,23,36] as well as in organotypic cell cul-
tures [41,42]. Altogether, these data support the notion
that acquisition of resistance to TNF by HPV-infected cells
may represent an important step towards malignancy.

Despite the existence of similarities between the two high-
risk HPV types used to generate the cell lines studied, the
fact that HPV16 and HPV18 are different viruses that
exhibit clear differences in their biological activities must
be highlighted. For instance, epidemiological studies have

shown that HPV18 is more associated to cervical adeno-
carcinomas while HPV16 is more prevalent in squamous
cell carcinomas [43-45]. Furthermore, compared to other
HPV types HPV18 has been associated with increased
transforming potential in cell culture systems and with
poorer cancer prognosis at the clinical level [26,27,46,47].
On the other hand, HPV16 exhibits a greater potential to
establish persistent infections that can progress to high-
grade lesions [48,49]. Although we cannot explain the
molecular bases of the differences in gene expression
between these cell lines, we believe that this may reflect
the divergences that exist between these HPV types.

We next searched for genes that best distinguish between
TNF-sensitive and TNF-resistant cells by pair-wise com-
parison both before and after cytokine treatment for 3 or
60 hours. By this means we identified 48 and 52 different
genes, respectively, that set apart TNF-sensitive from TNF
resistant cells (Figure 4, Table 3, additional files 4 and 5).
The functional characterization of these genes shows that
they are involved in critical cellular processes such as reg-
ulation of proliferation, differentiation and cell adhesion.
Altogether, the differential expression of these genes may
contribute to the differential response to the cytostatic
effect of TNF observed in these cells.

Two genes, namely KLK7 and SOD2, were selected for fur-
ther analysis based on their reported function and expres-
sion profile (Figure 5A). KLK7 expression pattern was
validated by Northern blot and showed that it is equally
expressed in TNF-treated or untreated HPV18-immortal-
ized cells but is not detected in PHK or HPV16-immortal-
ized cells (Figure 5B). Kallikreins are a sub-group of serine
proteases with different physiological functions. In
humans, kallikreins are encoded by 15 structurally simi-
lar, steroid hormone-regulated genes that co-localize to
chromosome 19q13.4, representing the largest cluster of
contiguous protease genes in the entire genome [50-52].
These proteins mediate the proteolytic degradation of
cohesive intracellular structures associated to epithelial
differentiation. Recent data also suggest that kallikreins
may be causally involved in carcinogenesis, particularly in
tumor metastasis and invasion, and, thus, may represent
attractive drug targets to consider for therapeutic interven-
tion [50]. Consistent with our findings, it has been
observed that KLK7 expression is up-regulated in cervical
tumors as well as in cells lines derived from them. On the
other hand, normal keratinocytes express low levels of
this protein [53,54]. Furthermore, KLK7 expression has
been found up-regulated in breast [55] and ovary tumors
[56] and is being considered a new tumor progression
marker.

The superoxide dismutase 2 (SOD2) expression pattern
was also validated by Northern blot (Figure 5B). This gene

Analysis of TNF-induced NF-κB activation in normal and HPV16 or 18-immortalized keratinocytesFigure 6
Analysis of TNF-induced NF-κB activation in normal 
and HPV16 or 18-immortalized keratinocytes. Sub-
confluent cultures of normal and HPV16 or 18-immortalized 
keratinocytes treated with 2 nM of TNF for 1 h were used to 
obtain nuclear protein extracts. For each EMSA reaction, 5 
μg of nuclear protein were incubated with 50 fmol of [γ-
32P]ATP-labeled double-stranded oligonucleotide and a 50X 
excess of unlabeled oligonucleotide (lanes 3 and 7). Specifi-
city of binding was further demonstrated by incubation of 1 
μg of nuclear protein with the described amount of labeled 
consensus oligonucleotide and a 50X excess of a labeled oli-
gonucleotide carrying a single-base mutation at the NF-κB 
binding site (lane 4), and incubation of nuclear extract in the 
absence of any labeled probe (lane 8). NF-κB DNA binding 
reactions were carried out as described under "Material and 
Methods". DNA binding complexes are indicated.
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is up-regulated in TNF-sensitive but not in TNF-resistant
cells. The superoxide dismutase 2 (SOD2) belongs to a
family of enzymes involved in the conversion of superox-
ide radicals in molecular oxygen. Reactive oxygen metab-
olites have multifactorial effects on the regulation of cell
growth and malignant invasion. Furthermore, numerous
in vivo studies have shown that the superoxide dismutases
can be highly expressed in aggressive human solid tumors
[57-59].

Previous reports have shown that activation of the tran-
scription factor NF-κB is essential for the induction of
SOD2 by TNF and IL-1β [60,61]. Here we show that TNF-
sensitive cells exhibit higher levels of activated NF-κB than
TNF-resistant ones after cytokine treatment (Figure 6 and
additional file 6). Several studies have shown that NF-κB
is a negative regulator of keratinocytes proliferation in the
epidermis, and that it plays an important role in cell dif-
ferentiation and tissue homeostasis [62-64]. In stratified
epithelia NF-κB is found in the cytoplasm of proliferating
cells from the basal layer while it is detected in the nuclei
of non-proliferating cells from the upper layers. Further-
more, it has been observed that NF-κB superexpression is
associated with epidermal hypoplasia while its down-reg-
ulation promotes hyperplasia [62]. Overall, these data
suggest that alterations in TNF-mediated NF-κB activation
pathways can play a role in the development and progres-
sion of HPV-associated epithelial and mucosal lesions.

Conclusion
Progression of HPV-associated lesions depends on the
many alterations caused by this virus in the infected cells.
We have identified multiple genes differentially regulated
by TNF in HPV16 and HPV18 immortalized keratinoc-
ytes. Among them we found KLK7 (kallikrein 7), SOD2
(superoxide dismutase 2), S100P (S100 calcium binding pro-
tein P), PI3 (protease inhibitor 3, skin-derived), CSTA (cysta-
tin A), RARRES1 (retinoic acid receptor responder 1), and
LXN (latexin). The differential expression of the KLK7 and
SOD2 transcripts was further confirmed at the RNA level.
Moreover, we present evidence that differential SOD2
expression correlates with the levels of NF-κB activation
exhibited by TNF-sensitive and TNF-resistant cells.

This is the first time that the effect of TNF on global gene
expression of normal and HPV-immortalized keratinoc-
ytes is addressed at two time points. The thorough analy-
sis of the expression pattern of the identified genes may
contribute to the understanding of critical differences
between transient and chronic events. Furthermore, it
may provide insights of the molecular mechanisms of
HPV-induced TNF resistance, contribute to the identifica-
tion of key functions and pathways associated to specific
HPV types and, finally, lead to the identification of new
cervical tumor progression markers.
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